The Waller-Duncan k-ratio t test is performed on all main effect means in the MEANS statement. See the K-RATIO option for information on controlling details of the test.

waller.test(
  y,
  trt,
  DFerror,
  MSerror,
  Fc,
  K = 100,
  group = TRUE,
  main = NULL,
  console = FALSE
)

Arguments

y

model(aov or lm) or answer of the experimental unit

trt

Constant( only y=model) or vector treatment applied to each unit

DFerror

Degrees of freedom

MSerror

Mean Square Error

Fc

F Value

K

K-RATIO

group

TRUE or FALSE

main

Title

console

logical, print output

Value

statistics

Statistics of the model

parameters

Design parameters

means

Statistical summary of the study variable

comparison

Comparison between treatments

groups

Formation of treatment groups

Details

It is necessary first makes a analysis of variance.

K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.

if y = model, then to apply the instruction:
waller.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.

References

Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504.

Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172.

Steel & Torry & Dickey. Third Edition 1997 Principles and procedures of statistics a biometrical approach

See also

Examples

library(agricolae) data(sweetpotato) model<-aov(yield~virus, data=sweetpotato) out <- waller.test(model,"virus", group=TRUE) #startgraph oldpar<-par(mfrow=c(2,2)) # variation: SE is error standard # variation: range is Max - Min bar.err(out$means,variation="SD",horiz=TRUE,xlim=c(0,45),bar=FALSE, col=colors()[25],space=2, main="Standard deviation",las=1) bar.err(out$means,variation="SE",horiz=FALSE,ylim=c(0,45),bar=FALSE, col=colors()[15],space=2,main="SE",las=1) bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col="green", space=3,main="Range = Max - Min",las=1) bar.group(out$groups,horiz=FALSE,ylim=c(0,45),density=8,col="red", main="Groups",las=1)
#endgraph # Old version HSD.test() df<-df.residual(model) MSerror<-deviance(model)/df Fc<-anova(model)["virus",4] out <- with(sweetpotato,waller.test(yield, virus, df, MSerror, Fc, group=TRUE)) print(out)
#> $statistics #> Mean Df CV MSerror F.Value Waller CriticalDifference #> 27.625 8 17.1666 22.48917 17.34478 2.236 8.657906 #> #> $parameters #> test name.t ntr K #> Waller-Duncan virus 4 100 #> #> $means #> yield std r Min Max Q25 Q50 Q75 #> cc 24.40000 3.609709 3 21.7 28.5 22.35 23.0 25.75 #> fc 12.86667 2.159475 3 10.6 14.9 11.85 13.1 14.00 #> ff 36.33333 7.333030 3 28.0 41.8 33.60 39.2 40.50 #> oo 36.90000 4.300000 3 32.1 40.4 35.15 38.2 39.30 #> #> $comparison #> NULL #> #> $groups #> yield groups #> oo 36.90000 a #> ff 36.33333 a #> cc 24.40000 b #> fc 12.86667 c #> #> attr(,"class") #> [1] "group"
par(oldpar)