It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.
kruskal( y, trt, alpha = 0.05, p.adj = c("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), group = TRUE, main = NULL, console = FALSE )
y | response |
---|---|
trt | treatment |
alpha | level signification |
p.adj | Method for adjusting p values (see p.adjust) |
group | TRUE or FALSE |
main | Title |
console | logical, print output |
Statistics of the model
Design parameters
Statistical summary of the study variable
Comparison between treatments
Formation of treatment groups
For equal or different repetition.
For the adjustment methods, see the
function p.adjusted.
p-adj = "none" is t-student.
Practical Nonparametrics Statistics. W.J. Conover, 1999
BIB.test
, DAU.test
,
duncan.test
, durbin.test
,
friedman
, HSD.test
, LSD.test
,
Median.test
, PBIB.test
, REGW.test
,
scheffe.test
, SNK.test
,
waerden.test
, waller.test
,
plot.group
#> 'data.frame': 34 obs. of 3 variables: #> $ method : int 1 1 1 1 1 1 1 1 1 2 ... #> $ observation: int 83 91 94 89 89 96 91 92 90 91 ... #> $ rx : num 11 23 28.5 17 17 31.5 23 26 19.5 23 ...