It makes multiple comparisons of treatments by means of Tukey. The level by alpha default is 0.05.

HSD.test(
  y,
  trt,
  DFerror,
  MSerror,
  alpha = 0.05,
  group = TRUE,
  main = NULL,
  unbalanced = FALSE,
  console = FALSE
)

Arguments

y

model(aov or lm) or answer of the experimental unit

trt

Constant( only y=model) or vector treatment applied to each experimental unit

DFerror

Degree free

MSerror

Mean Square Error

alpha

Significant level

group

TRUE or FALSE

main

Title

unbalanced

TRUE or FALSE. not equal replication

console

logical, print output

Value

statistics

Statistics of the model

parameters

Design parameters

means

Statistical summary of the study variable

comparison

Comparison between treatments

groups

Formation of treatment groups

Details

It is necessary first makes a analysis of variance.

if y = model, then to apply the instruction:
HSD.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, unbalanced=FALSE, console=FALSE)
where the model class is aov or lm.

References

1. Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997
2. Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

See also

Examples

library(agricolae) data(sweetpotato) model<-aov(yield~virus, data=sweetpotato) out <- HSD.test(model,"virus", group=TRUE,console=TRUE, main="Yield of sweetpotato\nDealt with different virus")
#> #> Study: Yield of sweetpotato #> Dealt with different virus #> #> HSD Test for yield #> #> Mean Square Error: 22.48917 #> #> virus, means #> #> yield std r Min Max #> cc 24.40000 3.609709 3 21.7 28.5 #> fc 12.86667 2.159475 3 10.6 14.9 #> ff 36.33333 7.333030 3 28.0 41.8 #> oo 36.90000 4.300000 3 32.1 40.4 #> #> Alpha: 0.05 ; DF Error: 8 #> Critical Value of Studentized Range: 4.52881 #> #> Minimun Significant Difference: 12.39967 #> #> Treatments with the same letter are not significantly different. #> #> yield groups #> oo 36.90000 a #> ff 36.33333 ab #> cc 24.40000 bc #> fc 12.86667 c
#stargraph # Variation range: max and min plot(out)
#> Warning: NAs introduced by coercion
#endgraph out<-HSD.test(model,"virus", group=FALSE) print(out$comparison)
#> difference pvalue signif. LCL UCL #> cc - fc 11.5333333 0.0686 . -0.8663365 23.9330031 #> cc - ff -11.9333333 0.0592 . -24.3330031 0.4663365 #> cc - oo -12.5000000 0.0482 * -24.8996698 -0.1003302 #> fc - ff -23.4666667 0.0014 ** -35.8663365 -11.0669969 #> fc - oo -24.0333333 0.0012 ** -36.4330031 -11.6336635 #> ff - oo -0.5666667 0.9988 -12.9663365 11.8330031
# Old version HSD.test() df<-df.residual(model) MSerror<-deviance(model)/df with(sweetpotato,HSD.test(yield,virus,df,MSerror, group=TRUE,console=TRUE, main="Yield of sweetpotato. Dealt with different virus"))
#> #> Study: Yield of sweetpotato. Dealt with different virus #> #> HSD Test for yield #> #> Mean Square Error: 22.48917 #> #> virus, means #> #> yield std r Min Max #> cc 24.40000 3.609709 3 21.7 28.5 #> fc 12.86667 2.159475 3 10.6 14.9 #> ff 36.33333 7.333030 3 28.0 41.8 #> oo 36.90000 4.300000 3 32.1 40.4 #> #> Alpha: 0.05 ; DF Error: 8 #> Critical Value of Studentized Range: 4.52881 #> #> Minimun Significant Difference: 12.39967 #> #> Treatments with the same letter are not significantly different. #> #> yield groups #> oo 36.90000 a #> ff 36.33333 ab #> cc 24.40000 bc #> fc 12.86667 c