Scheffe 1959, method is very general in that all possible contrasts can be tested for significance and confidence intervals can be constructed for the corresponding linear. The test is conservative.

scheffe.test(
  y,
  trt,
  DFerror,
  MSerror,
  Fc,
  alpha = 0.05,
  group = TRUE,
  main = NULL,
  console = FALSE
)

Arguments

y

model(aov or lm) or answer of the experimental unit

trt

Constant( only y=model) or vector treatment applied to each experimental unit

DFerror

Degrees of freedom

MSerror

Mean Square Error

Fc

F Value

alpha

Significant level

group

TRUE or FALSE

main

Title

console

logical, print output

Value

statistics

Statistics of the model

parameters

Design parameters

means

Statistical summary of the study variable

comparison

Comparison between treatments

groups

Formation of treatment groups

Details

It is necessary first makes a analysis of variance.

if y = model, then to apply the instruction:
scheffe.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.

References

Robert O. Kuehl. 2nd ed. Design of experiments. Duxbury, copyright 2000.
Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp189

See also

Examples

library(agricolae) data(sweetpotato) model<-aov(yield~virus, data=sweetpotato) comparison <- scheffe.test(model,"virus", group=TRUE,console=TRUE, main="Yield of sweetpotato\nDealt with different virus")
#> #> Study: Yield of sweetpotato #> Dealt with different virus #> #> Scheffe Test for yield #> #> Mean Square Error : 22.48917 #> #> virus, means #> #> yield std r Min Max #> cc 24.40000 3.609709 3 21.7 28.5 #> fc 12.86667 2.159475 3 10.6 14.9 #> ff 36.33333 7.333030 3 28.0 41.8 #> oo 36.90000 4.300000 3 32.1 40.4 #> #> Alpha: 0.05 ; DF Error: 8 #> Critical Value of F: 4.066181 #> #> Minimum Significant Difference: 13.52368 #> #> Means with the same letter are not significantly different. #> #> yield groups #> oo 36.90000 a #> ff 36.33333 a #> cc 24.40000 ab #> fc 12.86667 b
# Old version scheffe.test() df<-df.residual(model) MSerror<-deviance(model)/df Fc<-anova(model)["virus",4] out <- with(sweetpotato,scheffe.test(yield, virus, df, MSerror, Fc)) print(out)
#> $statistics #> MSerror Df F Mean CV Scheffe CriticalDifference #> 22.48917 8 4.066181 27.625 17.1666 3.492641 13.52368 #> #> $parameters #> test name.t ntr alpha #> Scheffe virus 4 0.05 #> #> $means #> yield std r Min Max Q25 Q50 Q75 #> cc 24.40000 3.609709 3 21.7 28.5 22.35 23.0 25.75 #> fc 12.86667 2.159475 3 10.6 14.9 11.85 13.1 14.00 #> ff 36.33333 7.333030 3 28.0 41.8 33.60 39.2 40.50 #> oo 36.90000 4.300000 3 32.1 40.4 35.15 38.2 39.30 #> #> $comparison #> NULL #> #> $groups #> yield groups #> oo 36.90000 a #> ff 36.33333 a #> cc 24.40000 ab #> fc 12.86667 b #> #> attr(,"class") #> [1] "group"