A multiple comparison of the Durbin test for the balanced incomplete blocks for sensorial or categorical evaluation. It forms groups according to the demanded ones for level of significance (alpha); by default, 0.05.
durbin.test( judge, trt, evaluation, alpha = 0.05, group = TRUE, main = NULL, console = FALSE )
judge | Identification of the judge in the evaluation |
---|---|
trt | Treatments |
evaluation | variable |
alpha | level of significant |
group | TRUE or FALSE |
main | Title |
console | logical, print output |
Statistics of the model
Design parameters
Statistical summary of the study variable
rank table of the study variable
Comparison between treatments
Formation of treatment groups
The post hoc test is using the criterium Fisher's least significant difference.
Practical Nonparametrics Statistics. W.J. Conover, 1999 Nonparametric Statistical Methods. Myles Hollander and Douglas A. Wofe, 1999
BIB.test
, DAU.test
,
duncan.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
,
scheffe.test
, SNK.test
,
waerden.test
, waller.test
,
plot.group
library(agricolae) # Example 1. Conover, pag 391 person<-gl(7,3) variety<-c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7) preference<-c(2,3,1,3,1,2,2,1,3,1,2,3,3,1,2,3,1,2,3,1,2) out<-durbin.test(person,variety,preference,group=TRUE,console=TRUE, main="Seven varieties of ice cream manufacturer")#> #> Study: Seven varieties of ice cream manufacturer #> variety, Sum of ranks #> #> sum #> 1 8 #> 2 9 #> 3 4 #> 4 3 #> 5 5 #> 6 6 #> 7 7 #> #> Durbin Test #> =========== #> Value : 12 #> DF 1 : 6 #> P-value : 0.0619688 #> Alpha : 0.05 #> DF 2 : 8 #> t-Student : 2.306004 #> #> Least Significant Difference #> between the sum of ranks: 2.824267 #> #> Parameters BIB #> Lambda : 1 #> Treatmeans : 7 #> Block size : 3 #> Blocks : 7 #> Replication: 3 #> #> Treatments with the same letter are not significantly different. #> #> Sum of ranks groups #> 2 9 a #> 1 8 ab #> 7 7 abc #> 6 6 bcd #> 5 5 cde #> 3 4 de #> 4 3 e#endgraph # Example 2. Myles Hollander, pag 311 # Source: W. Moore and C.I. Bliss. 1942 day<-gl(7,3) chemical<-c("A","B","D","A","C","E","C","D","G","A","F","G","B","C","F", "B","E","G","D","E","F") toxic<-c(0.465,0.343,0.396,0.602,0.873,0.634,0.875,0.325,0.330,0.423,0.987, 0.426,0.652,1.142,0.989,0.536,0.409,0.309,0.609,0.417,0.931) out<-durbin.test(day,chemical,toxic,group=TRUE,console=TRUE, main="Logarithm of Toxic Dosages")#> #> Study: Logarithm of Toxic Dosages #> chemical, Sum of ranks #> #> sum #> A 5 #> B 5 #> C 9 #> D 5 #> E 5 #> F 8 #> G 5 #> #> Durbin Test #> =========== #> Value : 7.714286 #> DF 1 : 6 #> P-value : 0.2597916 #> Alpha : 0.05 #> DF 2 : 8 #> t-Student : 2.306004 #> #> Least Significant Difference #> between the sum of ranks: 5.00689 #> #> Parameters BIB #> Lambda : 1 #> Treatmeans : 7 #> Block size : 3 #> Blocks : 7 #> Replication: 3 #> #> Treatments with the same letter are not significantly different. #> #> Sum of ranks groups #> C 9 a #> F 8 a #> A 5 a #> B 5 a #> D 5 a #> E 5 a #> G 5 aplot(out)#> Warning: NAs introduced by coercion