Analysis of variance PBIB and comparison mean adjusted. Applied to resoluble designs: Lattices and alpha design.
PBIB.test( block, trt, replication, y, k, method = c("REML", "ML", "VC"), test = c("lsd", "tukey"), alpha = 0.05, console = FALSE, group = TRUE )
block | blocks |
---|---|
trt | Treatment |
replication | Replication |
y | Response |
k | Block size |
method | Estimation method: REML, ML and VC |
test | Comparison treatments |
alpha | Significant test |
console | logical, print output |
group | logical, groups |
Analysis of variance
Estimation method: REML, ML and VC
Design parameters
Statistics of the model
Object: estimation model
Criterion AIC and BIC
Comparison between treatments
Statistical summary of the study variable
Formation of treatment groups
Variance-Covariance Matrix
Method of comparison treatment. lsd: least significant difference. tukey: Honestly significant difference. Estimate: specifies the estimation method for the covariance parameters. The REML is the default method. The REML specification performs residual (restricted) maximum likelihood, and The ML specification performs maximum likelihood, and the VC specifications apply only to variance component models.
1. Iterative Analysis of Generalizad Lattice Designs. E.R. Williams (1977) Austral J. Statistics 19(1) 39-42.
2. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992
BIB.test
, DAU.test
,
duncan.test
, durbin.test
,
friedman
, HSD.test
, kruskal
,
LSD.test
, Median.test
, REGW.test
,
scheffe.test
, SNK.test
,
waerden.test
, waller.test
,
plot.group
require(agricolae) # alpha design Genotype<-c(paste("gen0",1:9,sep=""),paste("gen",10:30,sep="")) ntr<-length(Genotype) r<-2 k<-3 s<-10 obs<-ntr*r b <- s*r book<-design.alpha(Genotype,k,r,seed=5)#> #> Alpha Design (0,1) - Serie I #> #> Parameters Alpha Design #> ======================= #> Treatmeans : 30 #> Block size : 3 #> Blocks : 10 #> Replication: 2 #> #> Efficiency factor #> (E ) 0.6170213 #> #> <<< Book >>>book$book[,3]<- gl(20,3) dbook<-book$book # dataset yield<-c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,2,4,6,7,9,8,7,6,4,3,2,2,1,1,2, 1,1,2,4,5,6,7,8,6,5,4,3,1,1,2,5,4,2,7,6,6,5,6,4,5,7,6,5,5,4) rm(Genotype) # not run # analysis # require(nlme) # method = REML or LM in PBIB.test and require(MASS) method=VC model <- with(dbook,PBIB.test(block, Genotype, replication, yield, k=3, method="VC"))#> Error in eval(predvars, data, env): object 'yield' not found# model$ANOVA # plot(model,las=2)