Multiple range tests for all pairwise comparisons, to obtain a confident inequalities multiple range tests.

REGW.test(
  y,
  trt,
  DFerror,
  MSerror,
  alpha = 0.05,
  group = TRUE,
  main = NULL,
  console = FALSE
)

Arguments

y

model(aov or lm) or answer of the experimental unit

trt

Constant( only y=model) or vector treatment applied to each experimental unit

DFerror

Degree free

MSerror

Mean Square Error

alpha

Significant level

group

TRUE or FALSE

main

Title

console

logical, print output

Value

statistics

Statistics of the model

parameters

Design parameters

regw

Critical Range Table

means

Statistical summary of the study variable

comparison

Comparison between treatments

groups

Formation of treatment groups

Details

It is necessary first makes a analysis of variance.

if y = model, then to apply the instruction:
REGW.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.

References

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC

See also

Examples

library(agricolae) data(sweetpotato) model<-aov(yield~virus,data=sweetpotato) out<- REGW.test(model,"virus", main="Yield of sweetpotato. Dealt with different virus") print(out)
#> $statistics #> MSerror Df Mean CV #> 22.48917 8 27.625 17.1666 #> #> $parameters #> test name.t ntr alpha #> REGW virus 4 0.05 #> #> $regw #> Table CriticalRange #> 2 3.879582 10.62212 #> 3 4.041036 11.06417 #> 4 4.528810 12.39967 #> #> $means #> yield std r Min Max Q25 Q50 Q75 #> cc 24.40000 3.609709 3 21.7 28.5 22.35 23.0 25.75 #> fc 12.86667 2.159475 3 10.6 14.9 11.85 13.1 14.00 #> ff 36.33333 7.333030 3 28.0 41.8 33.60 39.2 40.50 #> oo 36.90000 4.300000 3 32.1 40.4 35.15 38.2 39.30 #> #> $comparison #> NULL #> #> $groups #> yield groups #> oo 36.90000 a #> ff 36.33333 a #> cc 24.40000 b #> fc 12.86667 c #> #> attr(,"class") #> [1] "group"
REGW.test(model,"virus",alpha=0.05,console=TRUE,group=FALSE)
#> #> Study: model ~ "virus" #> #> Ryan, Einot and Gabriel and Welsch multiple range test #> for yield #> #> Mean Square Error: 22.48917 #> #> virus, means #> #> yield std r Min Max #> cc 24.40000 3.609709 3 21.7 28.5 #> fc 12.86667 2.159475 3 10.6 14.9 #> ff 36.33333 7.333030 3 28.0 41.8 #> oo 36.90000 4.300000 3 32.1 40.4 #> #> Comparison between treatments means #> #> difference pvalue signif. LCL UCL #> cc - fc 11.5333333 0.0350 * 0.9112173 22.1554494 #> cc - ff -11.9333333 0.0360 * -22.9975029 -0.8691637 #> cc - oo -12.5000000 0.0482 * -24.8996698 -0.1003302 #> fc - ff -23.4666667 0.0006 *** -34.0887827 -12.8445506 #> fc - oo -24.0333333 0.0007 *** -35.0975029 -12.9691637 #> ff - oo -0.5666667 0.9873 -11.1887827 10.0554494