The variance analysis of a split plot design is divided into two parts: the plot-factor analysis and the sub-plot factor analysis.
sp.plot(block, pplot, splot, Y)
block | replications |
---|---|
pplot | main-plot Factor |
splot | sub-plot Factor |
Y | Variable, response |
ANOVA: Splip plot analysis
The split-plot design is specifically suited for a two-factor experiment on of the factors is assigned to main plot (main-plot factor), the second factor, called the subplot factor, is assigned into subplots.
Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.
#> #> ANALYSIS SPLIT PLOT: yield #> Class level information #> #> A : a1 a2 #> B : b1 b2 b3 #> block : 1 2 3 #> #> Number of observations: 18 #> #> Analysis of Variance Table #> #> Response: yield #> Df Sum Sq Mean Sq F value Pr(>F) #> block 2 2.111 1.056 0.5135 0.6607143 #> A 1 0.222 0.222 0.1081 0.7735446 #> Ea 2 4.111 2.056 #> B 2 29.778 14.889 3.4581 0.0827438 . #> A:B 2 300.444 150.222 34.8903 0.0001119 *** #> Eb 8 34.444 4.306 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> cv(a) = 24.8 %, cv(b) = 35.9 %, Mean = 5.777778 #># with aov plots[,1]<-as.factor(plots[,1]) AOV <- aov(yield ~ block + A*B + Error(block/A),data=plots) summary(AOV)#> #> Error: block #> Df Sum Sq Mean Sq #> block 2 2.111 1.056 #> #> Error: block:A #> Df Sum Sq Mean Sq F value Pr(>F) #> A 1 0.222 0.2222 0.108 0.774 #> Residuals 2 4.111 2.0556 #> #> Error: Within #> Df Sum Sq Mean Sq F value Pr(>F) #> B 2 29.78 14.89 3.458 0.082744 . #> A:B 2 300.44 150.22 34.890 0.000112 *** #> Residuals 8 34.44 4.31 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1