The criterion of the consensus is to produce many trees by means of boostrap and to such calculate the relative frequency with members of the clusters.

consensus(
  data,
  distance = c("binary", "euclidean", "maximum", "manhattan", "canberra", "minkowski",
    "gower", "chisq"),
  method = c("complete", "ward", "single", "average", "mcquitty", "median", "centroid"),
  nboot = 500,
  duplicate = TRUE,
  cex.text = 1,
  col.text = "red",
  ...
)

Arguments

data

data frame

distance

method distance, see dist()

method

method cluster, see hclust()

nboot

The number of bootstrap samples desired.

duplicate

control is TRUE other case is FALSE

cex.text

size text on percentage consensus

col.text

color text on percentage consensus

...

parameters of the plot dendrogram

Value

table.dend

The groups and consensus percentage

dendrogram

The class object is hclust, dendrogram plot

duplicate

Homonymous elements

Details

distance: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "gower", "chisq". Method: "ward", "single", "complete", "average", "mcquitty", "median", "centroid". see functions: dist(), hclust() and daisy() of cluster.

References

An Introduction to the Boostrap. Bradley Efron and Robert J. Tibshirani. 1993. Chapman and Hall/CRC

See also

Examples

library(agricolae) data(pamCIP) # only code rownames(pamCIP)<-substr(rownames(pamCIP),1,6) output<-consensus( pamCIP,distance="binary", method="complete",nboot=5)
#> #> Duplicates: 18 #> New data : 25 Records #> #> Consensus hclust #> #> Method distance: binary #> Method cluster : complete #> rows and cols : 25 107 #> n-bootstrap : 5 #> Run time : 0.6697083 secs #>
# Order consensus Groups<-output$table.dend[,c(6,5)] Groups<-Groups[order(Groups[,2],decreasing=TRUE),] print(Groups)
#> groups percentage #> 5 3-4-21 100 #> 7 1-11 100 #> 8 6-22-24 100 #> 9 12-15 100 #> 12 20-23 100 #> 15 2-3-4-5-8-16-18-21 100 #> 24 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25 100 #> 2 3-4 80 #> 3 2-8 80 #> 6 2-8-16 80 #> 16 6-22-24-25 80 #> 17 1-7-10-11-17-19 80 #> 18 1-6-7-10-11-17-19-22-24-25 80 #> 21 9-12-15 80 #> 23 1-2-3-4-5-6-7-8-10-11-13-14-16-17-18-19-20-21-22-23-24-25 80 #> 1 6-24 60 #> 4 7-10 60 #> 11 7-10-17 60 #> 10 5-18 40 #> 14 2-5-8-16-18 40 #> 20 2-3-4-5-8-13-16-18-20-21-23 40 #> 22 1-2-3-4-5-6-7-8-10-11-13-16-17-18-19-20-21-22-23-24-25 40 #> 13 1-11-19 20 #> 19 2-3-4-5-8-13-16-18-21 0
## Identification of the codes with the numbers. cbind(output$dendrogram$labels)
#> [,1] #> [1,] "701014" #> [2,] "702078" #> [3,] "702305" #> [4,] "702443" #> [5,] "702445" #> [6,] "702615" #> [7,] "702619" #> [8,] "702631" #> [9,] "702650" #> [10,] "703258" #> [11,] "703973" #> [12,] "704229" #> [13,] "704231" #> [14,] "704232" #> [15,] "704815" #> [16,] "704880" #> [17,] "705750" #> [18,] "705951" #> [19,] "706260" #> [20,] "706268" #> [21,] "706272" #> [22,] "706776" #> [23,] "706777" #> [24,] "707132" #> [25,] "719083"
## To reproduce dendrogram dend<-output$dendrogram data<-output$table.dend plot(dend)
text(data[,3],data[,4],data[,5])
# Other examples # classical dendrogram dend<-as.dendrogram(output$dendrogram) plot(dend,type="r",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
plot(dend,type="t",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
## Without the control of duplicates output<-consensus( pamCIP,duplicate=FALSE,nboot=5)
#> #> Consensus hclust #> #> Method distance: binary #> Method cluster : complete #> rows and cols : 43 107 #> n-bootstrap : 5 #> Run time : 0.03551149 secs #>
## using distance gower, require cluster package. # output<-consensus( pamCIP,distance="gower", method="complete",nboot=5)