Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Huanuco Peru, 2006.

Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).

data(Hco2006)

Format

An object of class list with two elements: wilt and yield

@details

  • amendment amendment

  • crop crop

  • block block

  • plant number platn

  • wilt_percent wilt percentage at 60 days

  • health kg/8m2, 20 plants

  • rot kg/8m2, 20 plants

Source

Experimental field, 2006. Data Kindly provided by Pedro Aley.

References

International Potato Center. CIP - Lima Peru.

Examples

library(agricolae) data(Hco2006) str(Hco2006)
#> List of 2 #> $ wilt :'data.frame': 1347 obs. of 5 variables: #> ..$ amendment : Factor w/ 3 levels "0C","2C1Z","4C": 1 1 1 1 1 1 1 1 1 1 ... #> ..$ crop : Factor w/ 3 levels "Cabbage","Corn",..: 3 3 3 3 3 3 3 3 3 3 ... #> ..$ block : Factor w/ 3 levels "I","II","III": 1 1 1 1 1 1 1 1 1 1 ... #> ..$ plant : num [1:1347] 1 2 3 4 5 6 7 8 9 10 ... #> ..$ wilt_percent: num [1:1347] 0 0 0 0 50 0 100 0 0 0 ... #> $ yield:'data.frame': 27 obs. of 5 variables: #> ..$ amendment: Factor w/ 3 levels "0C","2C1Z","4C": 1 1 1 1 1 1 1 1 1 3 ... #> ..$ crop : Factor w/ 3 levels "Cabbage","Corn",..: 3 3 3 1 1 1 2 2 2 3 ... #> ..$ block : Factor w/ 3 levels "I","II","III": 1 2 3 1 2 3 1 2 3 1 ... #> ..$ health : num [1:27] 3.9 11.4 13.1 8.2 13.1 14.5 4.5 13.4 14.4 3.8 ... #> ..$ rot : num [1:27] 1.5 2.6 2.8 1.5 2.15 0.5 1.3 3.6 4.7 0.8 ...
wilt<-Hco2006$wilt yield<-Hco2006$yield means <- tapply.stat(wilt[,5],wilt[,1:3],function(x) mean(x,na.rm=TRUE)) names(means)[4]<-"wilt_percent" model <- aov(wilt_percent ~ block + crop, means) anova(model)
#> Analysis of Variance Table #> #> Response: wilt_percent #> Df Sum Sq Mean Sq F value Pr(>F) #> block 2 569.9 284.93 1.2056 0.3186 #> crop 2 496.1 248.04 1.0495 0.3670 #> Residuals 22 5199.5 236.34
cv.model(model)
#> [1] 69.41147
yield<-yield[order(paste(yield[,1],yield[,2],yield[,3])),] correlation(means[,4],yield[,4],method="spearman")
#> #> Spearman's rank correlation rho #> #> data: means[, 4] and yield[, 4] #> p-value = 0.006544646 #> alternative hypothesis: true rho is not equal to 0 #> sample estimates: #> rho #> -0.5102417