This process lies in finding statistics which consist of more than one variable, grouped or crossed by factors. The table must be organized by columns between variables and factors.

tapply.stat(y, x, stat = "mean")

Arguments

y

data.frame variables

x

data.frame factors

stat

Method

Value

Statistics of quantitative variables by categorical variables.

Examples

library(agricolae) # case of 1 single factor data(sweetpotato) tapply.stat(sweetpotato[,2],sweetpotato[,1],mean)
#> sweetpotato[, 1] sweetpotato[, 2] #> 1 cc 24.40000 #> 2 fc 12.86667 #> 3 ff 36.33333 #> 4 oo 36.90000
with(sweetpotato,tapply.stat(yield,virus,sd))
#> virus yield #> 1 cc 3.609709 #> 2 fc 2.159475 #> 3 ff 7.333030 #> 4 oo 4.300000
with(sweetpotato,tapply.stat(yield,virus,function(x) max(x)-min(x)))
#> virus yield #> 1 cc 6.8 #> 2 fc 4.3 #> 3 ff 13.8 #> 4 oo 8.3
with(sweetpotato,tapply.stat(yield,virus, function(x) quantile(x,0.75,6)-quantile(x,0.25,6)))
#> virus yield #> 1 cc 3.40 #> 2 fc 2.15 #> 3 ff 6.90 #> 4 oo 4.15
# other case data(cotton) with(cotton,tapply.stat(yield,cotton[,c(1,3,4)],mean))
#> site lineage epoca yield #> 1 Lima 1 1 12.500000 #> 2 Lima 1 2 18.666667 #> 3 Lima 2 1 12.333333 #> 4 Lima 2 2 17.333333 #> 5 Lima 3 1 11.000000 #> 6 Lima 3 2 13.333333 #> 7 Lima 4 1 8.833333 #> 8 Lima 4 2 11.500000 #> 9 Pisco 1 1 14.833333 #> 10 Pisco 1 2 20.166667 #> 11 Pisco 2 1 17.000000 #> 12 Pisco 2 2 21.166667 #> 13 Pisco 3 1 15.833333 #> 14 Pisco 3 2 21.166667 #> 15 Pisco 4 1 14.666667 #> 16 Pisco 4 2 20.000000
with(cotton,tapply.stat(yield,cotton[,c(1,4)],max))
#> site epoca yield #> 1 Lima 1 15 #> 2 Lima 2 26 #> 3 Pisco 1 26 #> 4 Pisco 2 27
# Height of pijuayo data(growth) with(growth,tapply.stat(height, growth[,2:1], function(x) mean(x,na.rm=TRUE)))
#> slime place height #> 1 5 L1 8.433333 #> 2 6 L1 10.950000 #> 3 6 L2 11.350000 #> 4 7 L1 9.375000 #> 5 7 L2 12.000000 #> 6 9 L1 10.500000 #> 7 9 L2 12.400000 #> 8 10 L1 12.200000 #> 9 10 L2 10.600000 #> 10 11 L2 11.433333 #> 11 12 L2 12.500000 #> 12 13 L2 11.500000 #> 13 14 L2 11.500000 #> 14 15 L2 11.900000 #> 15 17 L1 11.233333 #> 16 18 L1 10.100000