Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Carhuaz Peru, 2006.

Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).

data(Chz2006)

Format

An object of class list with two elements: wilt and yield

Source

Experimental field, 2006. Data Kindly provided by Pedro Aley.

Details

  • amendment amendment

  • crop crop

  • block block

  • plant plant

  • wilt_percent a numeric vector, wilt percentage at 60 days

  • health a numeric vector, kg/8m2

  • rot a numeric vector, kg/8m2

References

International Potato Center. CIP - Lima Peru.

Examples

library(agricolae) data(Chz2006) str(Chz2006)
#> List of 2 #> $ wilt :'data.frame': 1920 obs. of 5 variables: #> ..$ amendment : Factor w/ 4 levels "0C","3C","3C1Z",..: 1 1 1 1 1 1 1 1 1 1 ... #> ..$ crop : Factor w/ 4 levels "Cabbage","Corn",..: 4 4 4 4 4 4 4 4 4 4 ... #> ..$ block : num [1:1920] 1 1 1 1 1 1 1 1 1 1 ... #> ..$ plant : num [1:1920] 1 2 3 4 5 6 7 8 9 10 ... #> ..$ wilt_percent: num [1:1920] 0 0 50 0 0 0 0 0 0 0 ... #> $ yield:'data.frame': 48 obs. of 5 variables: #> ..$ amendment: Factor w/ 4 levels "0C","3C","3C1Z",..: 1 1 1 1 1 1 1 1 1 1 ... #> ..$ crop : Factor w/ 4 levels "Cabbage","Corn",..: 3 3 3 1 1 1 2 2 2 4 ... #> ..$ block : num [1:48] 1 2 3 1 2 3 1 2 3 1 ... #> ..$ health : num [1:48] 1.2 1.85 1.9 4.5 2.35 2.37 2.65 1.38 1.65 3.18 ... #> ..$ rot : num [1:48] 1.3 1.39 2.1 0.5 0.31 0.4 0.15 0.3 0.2 0.14 ...
wilt <- Chz2006$wilt yield <- Chz2006$yield means <- tapply.stat(wilt[,5], wilt[,1:3],function(x) mean(x,na.rm=TRUE)) names(means)[4]<-"wilt_percent" model <- aov(wilt_percent ~ block + crop, means) anova(model)
#> Analysis of Variance Table #> #> Response: wilt_percent #> Df Sum Sq Mean Sq F value Pr(>F) #> block 1 15.82 15.820 0.2858 0.5957 #> crop 3 108.07 36.024 0.6508 0.5868 #> Residuals 43 2380.27 55.355
cv.model(model)
#> [1] 123.1466
yield <- yield[order(paste(yield[,1],yield[,2],yield[,3])),] correlation(means[,4],yield[,4],method="spearman")
#> #> Spearman's rank correlation rho #> #> data: means[, 4] and yield[, 4] #> p-value = 2.994637e-08 #> alternative hypothesis: true rho is not equal to 0 #> sample estimates: #> rho #> -0.7004247