A method based on the statistical ranges of the study variable per environment for the stability analysis.

stability.nonpar(data, variable = NULL, ranking = FALSE, console = FALSE)

Arguments

data

First column the genotypes following environment

variable

Name of variable

ranking

logical, print ranking

console

logical, print output

Value

ranking

data frame

statistics

Statistical analysis chi square test

References

Haynes K G, Lambert D H, Christ B J, Weingartner D P, Douches D S, Backlund J E, Fry W and Stevenson W. 1998. Phenotypic stability of resistance to late blight in potato clones evaluated at eight sites in the United States American Journal Potato Research 75, pag 211-217.

See also

Examples

library(agricolae) data(haynes) stability.nonpar(haynes,"AUDPC",ranking=TRUE,console=TRUE)
#> #> Nonparametric Method for Stability Analysis #> ------------------------------------------- #> #> Estimation and test of nonparametric measures #> Variable: AUDPC #> #> Ranking... #> FL MI ME MN ND NY PA WI #> A84118-3 7 11 11 14 8 14.0 12 11 #> AO80432-1 6 9 13 13 12 12.0 15 14 #> AO84275-3 10 10 12 8 9 7.0 11 12 #> AWN86514-2 3 3 3 1 3 3.0 2 1 #> B0692-4 1 8 4 3 2 2.0 1 3 #> B0718-3 2 1 2 2 4 4.0 3 4 #> B0749-2F 15 12 16 10 13 13.0 13 8 #> B0767-2 4 2 1 4 1 1.0 4 2 #> Bertita 8 7 7 6 10 8.5 10 9 #> Bzura 9 4 5 5 6 5.0 5 5 #> C0083008-1 11 15 14 15 15 15.0 14 15 #> Elba 13 13 10 9 14 11.0 7 13 #> Greta 5 5 8 7 5 6.0 6 7 #> Krantz 14 16 15 16 16 16.0 16 16 #> Libertas 12 6 6 12 7 8.5 8 6 #> Stobrawa 16 14 9 11 11 10.0 9 10 #> #> Statistics... #> Mean Rank s1 Z1 s2 Z2 #> A84118-3 741.62 13 4.82 0.22 16.70 0.34 #> AO80432-1 734.38 12 6.21 0.73 26.57 0.47 #> AO84275-3 635.88 9 6.20 0.70 28.53 0.87 #> AWN86514-2 176.88 2 5.71 0.15 23.64 0.09 #> B0692-4 224.50 4 3.11 4.37 7.12 3.28 #> B0718-3 192.50 3 6.64 1.59 30.57 1.43 #> B0749-2F 772.88 14 5.07 0.05 19.14 0.07 #> B0767-2 153.00 1 5.79 0.20 23.07 0.05 #> Bertita 502.12 8 3.57 2.73 9.43 2.30 #> Bzura 331.75 5 6.04 0.47 26.55 0.46 #> C0083008-1 1022.12 15 7.11 2.90 38.84 5.09 #> Elba 719.00 11 6.57 1.43 29.71 1.18 #> Greta 412.88 6 4.59 0.47 14.71 0.70 #> Krantz 1169.62 16 7.04 2.67 42.84 7.67 #> Libertas 500.88 7 4.50 0.59 14.00 0.87 #> Stobrawa 693.38 10 4.36 0.82 13.64 0.95 #> ------------------------ #> Sum of Z1: 20.08986 #> Sum of Z2: 25.84532 #> ------------------------ #> #> Test... #> The Z-statistics are measures of stability. The test for the significance #> of the sum of Z1 or Z2 are compared to a Chi-Square value of chi.sum. #> individual Z1 or Z2 are compared to a Chi-square value of chi.ind. #> #> MEAN es1 es2 vs1 vs2 chi.ind chi.sum #> 1 561.4609 5.3125 21.25 1.111905 60.75223 8.733011 26.29623 #> --- #> expectation and variance: es1, es2, vs1, vs2
# Example 2 data(CIC) data1<-CIC$comas[,c(1,6,7,17,18)] data2<-CIC$oxapampa[,c(1,6,7,19,20)] cic <- rbind(data1,data2) means <- by(cic[,5], cic[,c(2,1)], function(x) mean(x,na.rm=TRUE)) means <-as.data.frame(means[,]) cic.mean<-data.frame(genotype=row.names(means),means) cic.mean<-delete.na(cic.mean,"greater") out<-stability.nonpar(cic.mean) out$ranking
#> Mean Rank s1 Z1 s2 Z2 #> 762616.258 0.21156667 49 100.0 6.1406218415 5000.000 1.171984e+01 #> 762619.251 0.09073333 3 58.0 0.7113006387 1682.000 3.490158e-01 #> Atzimba 0.26909167 70 106.0 7.3524926275 5618.000 1.561060e+01 #> CC2.1 0.22568333 57 18.0 0.5089608533 162.000 4.996819e-01 #> CC2.10 0.28998333 79 68.0 1.5192700839 2312.000 1.273784e+00 #> CC2.101 0.31256667 88 12.0 0.8966861289 72.000 6.142120e-01 #> CC2.102 0.17503333 38 80.0 2.8887324335 3200.000 3.559733e+00 #> CC2.103 0.13860000 15 24.0 0.2302989456 288.000 3.591759e-01 #> CC2.104 0.28131667 76 62.0 0.9981339608 1922.000 6.330890e-01 #> CC2.105 0.43278333 104 74.0 2.1494695748 2738.000 2.226977e+00 #> CC2.106 0.19058333 45 8.0 1.2157604058 32.000 6.689042e-01 #> CC2.107 0.23630000 61 30.0 0.0607004057 450.000 2.125301e-01 #> CC2.108 0.15071667 22 46.0 0.1416363198 1058.000 3.370162e-03 #> CC2.109 0.17981667 42 2.0 1.7852579611 2.000 7.114540e-01 #> CC2.11 0.21800000 51 84.0 3.4421650993 3528.000 4.694790e+00 #> CC2.110 0.25455000 66 26.0 0.1616479470 338.000 3.098333e-01 #> CC2.111 0.27001667 71 92.0 4.6944482545 4232.000 7.660532e+00 #> CC2.112 0.26415000 68 4.0 1.5833072907 8.000 7.028391e-01 #> CC2.113 0.37413333 96 48.0 0.2062849930 1152.000 1.912771e-02 #> CC2.114 0.26607500 69 76.0 2.3837723757 2888.000 2.625580e+00 #> CC2.115 0.13686667 13 32.0 0.0284038630 512.000 1.665286e-01 #> CC2.116 0.08695000 2 38.0 0.0042231469 722.000 5.234829e-02 #> CC2.117 0.22551667 56 2.0 1.7852579611 2.000 7.114540e-01 #> CC2.118 0.28343333 77 78.0 2.6301933286 3042.000 3.068935e+00 #> CC2.119 0.12976667 9 22.0 0.3110680962 242.000 4.077896e-01 #> CC2.12 0.32376667 90 64.0 1.1597278499 2048.000 8.158386e-01 #> CC2.120 0.26336667 67 58.0 0.7113006387 1682.000 3.490158e-01 #> CC2.14 0.21693333 50 12.5 0.8602100745 78.125 6.060431e-01 #> CC2.15 0.12771667 8 28.0 0.1051151003 392.000 2.606365e-01 #> CC2.16 0.46028333 105 88.0 4.0440703729 3872.000 6.053700e+00 #> CC2.17 0.25080000 65 43.0 0.0673848450 924.500 3.126911e-03 #> CC2.18 0.39961667 103 30.0 0.0607004057 450.000 2.125301e-01 #> CC2.19 0.15001667 21 70.0 1.7172184289 2450.000 1.553598e+00 #> CC2.2 0.36513333 94 18.0 0.5089608533 162.000 4.996819e-01 #> CC2.20 0.37440000 97 84.0 3.4421650993 3528.000 4.694790e+00 #> CC2.21 0.29431667 80 0.0 1.9993267835 0.000 7.143373e-01 #> CC2.22 0.30085000 83 66.0 1.3334398909 2178.000 1.028646e+00 #> CC2.23 0.30753333 86 52.0 0.3719367953 1352.000 9.551027e-02 #> CC2.24 0.16428333 31 76.0 2.3837723757 2888.000 2.625580e+00 #> CC2.26 0.27376667 73 34.0 0.0082254723 578.000 1.237164e-01 #> CC2.27 0.16003333 27 32.0 0.0284038630 512.000 1.665286e-01 #> CC2.28 0.16395000 30 22.0 0.3110680962 242.000 4.077896e-01 #> CC2.3 0.30043333 82 106.0 7.3524926275 5618.000 1.561060e+01 #> CC2.30 0.30310000 84 102.0 6.5324606182 5202.000 1.293033e+01 #> CC2.31 0.36036667 92 94.0 5.0378144233 4418.000 8.564747e+00 #> CC2.32 0.39414167 101 38.0 0.0042231469 722.000 5.234829e-02 #> CC2.33 0.13773333 14 26.0 0.1616479470 338.000 3.098333e-01 #> CC2.34 0.13273333 11 6.0 1.3934747723 18.000 6.885975e-01 #> CC2.35 0.36385000 93 86.0 3.7370586601 3698.000 5.344785e+00 #> CC2.36 0.23273333 59 46.0 0.1416363198 1058.000 3.370162e-03 #> CC2.37 0.27213333 72 102.0 6.5324606182 5202.000 1.293033e+01 #> CC2.38 0.21893333 52 94.0 5.0378144233 4418.000 8.564747e+00 #> CC2.39 0.39881667 102 100.0 6.1406218415 5000.000 1.171984e+01 #> CC2.4 0.29800000 81 104.0 6.9364175469 5408.000 1.422605e+01 #> CC2.40 0.20903333 48 14.0 0.7553262184 98.000 5.799127e-01 #> CC2.41 0.15696667 26 74.0 2.1494695748 2738.000 2.226977e+00 #> CC2.43 0.49376667 106 50.0 0.2830518182 1250.000 4.926966e-02 #> CC2.44 0.11718333 4 70.0 1.7172184289 2450.000 1.553598e+00 #> CC2.46 0.32461667 91 8.0 1.2157604058 32.000 6.689042e-01 #> CC2.47 0.14420000 16 16.0 0.6260844598 128.000 5.415611e-01 #> CC2.48 0.23183333 58 42.0 0.0486934294 882.000 8.501204e-03 #> CC2.49 0.27411667 74 56.0 0.5860612056 1568.000 2.434942e-01 #> CC2.5 0.31270000 89 62.0 0.9981339608 1922.000 6.330890e-01 #> CC2.50 0.24668333 64 50.0 0.2830518182 1250.000 4.926966e-02 #> CC2.51 0.13461667 12 4.0 1.5833072907 8.000 7.028391e-01 #> CC2.52 0.11930000 7 13.5 0.7895301192 91.125 5.888864e-01 #> CC2.53 0.24228333 63 54.0 0.4729399245 1458.000 1.596337e-01 #> CC2.54 0.38315000 100 96.0 5.3932987441 4608.000 9.540476e+00 #> CC2.55 0.17501667 37 40.0 0.0203992122 800.000 2.631117e-02 #> CC2.56 0.18508333 43 10.0 1.0501641913 50.000 6.440041e-01 #> CC2.58 0.23298333 60 82.0 3.1593896904 3362.000 4.100740e+00 #> CC2.6 0.16106667 28 96.0 5.3932987441 4608.000 9.540476e+00 #> CC2.60 0.17676667 40 92.0 4.6944482545 4232.000 7.660532e+00 #> CC2.61 0.14451667 17 36.0 0.0001652336 648.000 8.524818e-02 #> CC2.62 0.16963333 33 10.0 1.0501641913 50.000 6.440041e-01 #> CC2.63 0.38006667 99 86.0 3.7370586601 3698.000 5.344785e+00 #> CC2.64 0.18548333 44 20.0 0.4039553987 200.000 4.548698e-01 #> CC2.65 0.16696667 32 82.0 3.1593896904 3362.000 4.100740e+00 #> CC2.66 0.31165000 87 104.0 6.9364175469 5408.000 1.422605e+01 #> CC2.68 0.14458333 18 44.0 0.0891057986 968.000 3.527591e-04 #> CC2.69 0.11881667 5 28.0 0.1051151003 392.000 2.606365e-01 #> CC2.7 0.52773333 108 60.0 0.8486582238 1800.000 4.781927e-01 #> CC2.70 0.17510000 39 90.0 4.3632002378 4050.000 6.824577e+00 #> CC2.71 0.22300000 54 108.0 7.7806858602 5832.000 1.708766e+01 #> CC2.72 0.17151667 34 68.0 1.5192700839 2312.000 1.273784e+00 #> CC2.73 0.17363333 36 66.0 1.3334398909 2178.000 1.028646e+00 #> CC2.74 0.20510000 47 24.0 0.2302989456 288.000 3.591759e-01 #> CC2.75 0.30496667 85 34.0 0.0082254723 578.000 1.237164e-01 #> CC2.76 0.19255000 46 98.0 5.7609012168 4802.000 1.059104e+01 #> CC2.77 0.17205000 35 72.0 1.9272849258 2592.000 1.870501e+00 #> CC2.8 0.17890000 41 72.0 1.9272849258 2592.000 1.870501e+00 #> CC2.83 0.15110000 23 56.0 0.5860612056 1568.000 2.434942e-01 #> CC2.84 0.22048333 53 48.0 0.2062849930 1152.000 1.912771e-02 #> CC2.85 0.15310000 24 52.0 0.3719367953 1352.000 9.551027e-02 #> CC2.86 0.13200000 10 6.0 1.3934747723 18.000 6.885975e-01 #> CC2.88 0.14791667 20 54.0 0.4729399245 1458.000 1.596337e-01 #> CC2.9 0.27691667 75 40.0 0.0203992122 800.000 2.631117e-02 #> CC2.90 0.37865000 98 60.0 0.8486582238 1800.000 4.781927e-01 #> CC2.91 0.14760000 19 64.0 1.1597278499 2048.000 8.158386e-01 #> CC2.92 0.11891667 6 20.0 0.4039553987 200.000 4.548698e-01 #> CC2.94 0.16336667 29 36.0 0.0001652336 648.000 8.524818e-02 #> CC2.96 0.23653333 62 43.0 0.0673848450 924.500 3.126911e-03 #> CC2.97 0.15518333 25 78.0 2.6301933286 3042.000 3.068935e+00 #> CC2.98 0.36918333 95 88.0 4.0440703729 3872.000 6.053700e+00 #> CC2.99 0.22388333 55 16.0 0.6260844598 128.000 5.415611e-01 #> Chata_Blanca 0.70826667 109 80.0 2.8887324335 3200.000 3.559733e+00 #> Lbr_40 0.08095000 1 108.0 7.7806858602 5832.000 1.708766e+01 #> Monserrate 0.28824167 78 90.0 4.3632002378 4050.000 6.824577e+00 #> Yungay 0.51476667 107 98.0 5.7609012168 4802.000 1.059104e+01
out$statistics
#> MEAN es1 es2 vs1 vs2 chi.ind chi.sum #> 1 0.2425566 36.33028 990 660.1667 1372041 12.27643 134.3688