If the cause and effect relationship is well defined, it is possible to represent the whole system of variables in a diagram form known as path-analysis. The function calculates the direct and indirect effects and uses the variables correlation or covariance.

path.analysis(corr.x, corr.y)

Arguments

corr.x

Matrix of correlations of the independent variables

corr.y

vector of dependent correlations with each one of the independent ones

Value

Direct and indirect effects and residual Effect^2.

Details

It is necessary first to calculate the correlations.

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979

See also

Examples

# Path analysis. Multivarial Analysis. Anderson. Prentice Hall, pag 616 library(agricolae) # Example 1 corr.x<- matrix(c(1,0.5,0.5,1),c(2,2)) corr.y<- rbind(0.6,0.7) names<-c("X1","X2") dimnames(corr.x)<-list(names,names) dimnames(corr.y)<-list(names,"Y") path.analysis(corr.x,corr.y)
#> Direct(Diagonal) and indirect effect path coefficients #> ====================================================== #> X1 X2 #> X1 0.3333333 0.2666667 #> X2 0.1666667 0.5333333 #> #> Residual Effect^2 = 0.4266667
# Example 2 # data of the progress of the disease related bacterial wilt to the ground # for the component CE Ca K2 Cu data(wilt) data(soil) x<-soil[,c(3,12,14,20)] y<-wilt[,14] cor.y<-correlation(y,x)$correlation cor.x<-correlation(x)$correlation path.analysis(cor.x,cor.y)
#> Direct(Diagonal) and indirect effect path coefficients #> ====================================================== #> EC Ca K2 Cu #> EC -0.19495296 -0.08486615 -0.06659364 0.006412745 #> Ca -0.04483918 -0.36898324 -0.05327491 -0.022902662 #> K2 -0.08772883 -0.13283397 -0.14798587 -0.011451331 #> Cu 0.02729341 -0.18449162 -0.03699647 -0.045805324 #> #> Residual Effect^2 = 0.6856863