Random generation form data, use function density and parameters
montecarlo(data, k, ...)
data | vector or object(hist, graph.freq) |
---|---|
k | number of simulations |
... | Other parameters of the function density, only if data is vector |
Generate random numbers with empirical distribution.
#> [1] 13.051613 8.468413 9.827569 13.304479 9.922394 15.959574 12.166581 #> [8] 4.232905 8.879321 8.310372 10.017219 9.068971 7.551774 12.672313 #> [15] 7.867856 13.936644 12.545880 4.359338 9.448270 7.172474 3.790389 #> [22] 12.261406 9.258620 9.954002 7.077649 12.356231 12.703922 12.293014 #> [29] 13.020004 8.784496 6.255834 10.522951 12.387839 11.755674 7.330516 #> [36] 10.048827 15.485450 7.362124 10.586168 10.017219 14.094686 12.198189 #> [43] 11.376374 14.063077 8.436805 9.416662 8.373589 12.798747 14.537201 #> [50] 10.270085 6.982825 8.942537 8.974146 6.856392 13.272871 9.574703 #> [57] 11.376374 6.224226 11.724065 14.568810 11.123508 8.594846 8.594846 #> [64] 4.422555 8.752888 6.635134 10.270085 9.479878 12.356231 10.270085 #> [71] 7.046041 7.994289 8.658063 11.629240 14.410768 11.882107 4.991504 #> [78] 8.468413 7.362124 10.522951 9.195404 12.767138 7.867856 11.976931 #> [85] 14.284335 12.261406 8.089114 12.925180 8.120722 11.060292 9.637919 #> [92] 12.640705 14.252727 8.057506 10.712601 11.724065 10.522951 9.416662 #> [99] 12.451056 7.456949#> [1] 8.890895 8.176087 15.853777 13.364009 8.263260 9.892125 11.271305 #> [8] 9.137233 15.504633 7.047226 8.177902 10.937915 9.897187 9.228510 #> [15] 12.536734 7.281644 6.045639 11.181868 11.712868 9.792405 8.586787 #> [22] 9.058353 9.915716 10.601531 11.954634 6.321239 10.213165 12.270448 #> [29] 10.085454 10.729684 8.551028 9.506762 15.778672 11.753025 9.717662 #> [36] 6.835867 8.349339 4.439961 9.153647 6.896786 8.756314 7.783035 #> [43] 13.586012 15.260068 9.506302 10.413303 10.913267 11.507782 8.235493 #> [50] 6.718644 9.556069 7.040178 12.759613 10.886160 10.015279 11.369920 #> [57] 6.897374 9.502858 14.905502 6.883863 6.519658 6.932246 11.320026 #> [64] 14.811630 6.419458 9.763918 11.640892 9.108587 11.968482 8.509126 #> [71] 7.181207 6.639744 7.465228 10.855295 9.453499 8.872006 8.982241 #> [78] 13.185733 7.876673 12.035770 8.357959 10.666061 12.933377 6.811592 #> [85] 9.487861 10.462159 9.641544 11.810421 6.204041 8.833070 7.538797 #> [92] 15.589634 10.831597 11.909540 10.709788 12.640547 12.711105 10.615331 #> [99] 13.987957 11.605399# other example breaks<-c(0, 150, 200, 250, 300) counts<-c(10, 20, 40, 30) par(mfrow=c(1,2),cex=0.8,mar=c(2,3,0,0)) h1<-graph.freq(x=breaks,counts=counts,plot=FALSE) r<-montecarlo(h, k=1000) plot(h1,frequency = 3,ylim=c(0,0.008)) text(90,0.006,"Population\n100 obs.") h2<-graph.freq(r,breaks,frequency = 3,ylim=c(0,0.008))