calculate AMMI stability value (ASV) and Yield stability index (YSI).
index.AMMI(model)
model | object AMMI |
---|
AMMI stability value
Yield stability index
Rank of AMMI stability value
Rank of yield stability index
average genotype by environment
AMMI stability value (ASV) was calculated using the following formula, as suggested by Purchase (1997)
ASV = sqrt((SSpc1/SSpc2 * PC1i)^2+(PC2i)^2)
YSI = RASV + RY
RASV = rank(ASV) and RY = rank(Y across by environment)
The use of an AMMI model and its parameters to analyse yield stability in multienvironment trials. N. SABAGHNIA, S.H. SABAGHPOUR AND H. DEHGHANI. Journal of Agricultural Science (2008), 146, 571-581. f 2008 Cambridge University Press 571 doi:10.1017/S0021859608007831 Printed in the United Kingdom
Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat. PURCHASE, J. L. (1997). Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture of the University of the Free State, Bloemfontein, South Africa.
library(agricolae) # Index AMMI data(plrv) model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield, console=FALSE)) Idx<-index.AMMI(model) names(Idx)#> [1] "ASV" "YSI" "rASV" "rYSI" "means"#> ASV YSI rASV rYSI means #> 402.7 0.2801470 20 1 19 27.47748 #> 364.21 0.7236998 12 2 10 34.05974 #> 506.2 0.7511331 14 3 11 33.26623 #> 233.11 1.0582263 21 4 17 28.66655 #> 427.7 1.1467970 12 5 7 36.19020 #> 104.22 1.4627695 19 6 13 31.28887 #> 241.2 1.6774241 29 7 22 26.34039 #> 221.19 1.8014494 34 8 26 22.98480 #> 317.6 2.1874274 18 9 9 35.32583 #> 121.31 2.2937918 25 10 15 30.10174 #> 406.12 2.5631734 23 11 12 32.68323 #> 314.12 2.9170536 30 12 18 28.17335 #> 342.15 2.9219360 37 13 24 26.01336 #> 351.26 2.9786832 22 14 8 36.11581 #> Canchan 3.0975884 35 15 20 27.00126 #> 450.3 3.1430174 22 16 6 36.19602 #> 157.26 3.2923168 22 17 5 36.95181 #> 320.16 3.3208950 39 18 21 26.34808 #> 255.7 3.3289736 33 19 14 30.58975 #> 102.18 3.3801820 43 20 23 26.31947 #> 235.6 3.7647078 25 21 4 38.63477 #> Unica 3.8380782 24 22 2 39.10400 #> 405.2 3.9832546 39 23 16 28.98663 #> 163.9 4.4269636 51 24 27 21.41747 #> 141.28 4.4672401 26 25 1 39.75624 #> 346.2 5.1827747 51 26 25 23.84175 #> 319.20 6.7164864 30 27 3 38.75767 #> Desiree 7.7833445 56 28 28 16.15569#> ASV YSI rASV rYSI means #> 141.28 4.4672401 26 25 1 39.75624 #> Unica 3.8380782 24 22 2 39.10400 #> 319.20 6.7164864 30 27 3 38.75767 #> 235.6 3.7647078 25 21 4 38.63477 #> 157.26 3.2923168 22 17 5 36.95181 #> 450.3 3.1430174 22 16 6 36.19602 #> 427.7 1.1467970 12 5 7 36.19020 #> 351.26 2.9786832 22 14 8 36.11581 #> 317.6 2.1874274 18 9 9 35.32583 #> 364.21 0.7236998 12 2 10 34.05974 #> 506.2 0.7511331 14 3 11 33.26623 #> 406.12 2.5631734 23 11 12 32.68323 #> 104.22 1.4627695 19 6 13 31.28887 #> 255.7 3.3289736 33 19 14 30.58975 #> 121.31 2.2937918 25 10 15 30.10174 #> 405.2 3.9832546 39 23 16 28.98663 #> 233.11 1.0582263 21 4 17 28.66655 #> 314.12 2.9170536 30 12 18 28.17335 #> 402.7 0.2801470 20 1 19 27.47748 #> Canchan 3.0975884 35 15 20 27.00126 #> 320.16 3.3208950 39 18 21 26.34808 #> 241.2 1.6774241 29 7 22 26.34039 #> 102.18 3.3801820 43 20 23 26.31947 #> 342.15 2.9219360 37 13 24 26.01336 #> 346.2 5.1827747 51 26 25 23.84175 #> 221.19 1.8014494 34 8 26 22.98480 #> 163.9 4.4269636 51 24 27 21.41747 #> Desiree 7.7833445 56 28 28 16.15569