Statistic analysis of the Carolina I, II and III genetic designs.
model = 1,2 and 3 is I, II and III see carolina1,2 and 3.
carolina(model, data)
model | Constant |
---|---|
data | Data frame |
model model analysis (I, II or III) of caroline design
variance additive variance of male, female and male.female interaction.
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979
library(agricolae) data(DC) carolina1 <- DC$carolina1 # str(carolina1) output<-carolina(model=1,carolina1)#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 1 0.5339 0.5339 7.2120 0.0099144 ** #> set:replication 2 2.9894 1.4947 20.1914 4.335e-07 *** #> set:male 4 22.1711 5.5428 74.8743 < 2.2e-16 *** #> set:male:female 6 4.8250 0.8042 10.8630 1.311e-07 *** #> set:replication:male:female 10 3.2072 0.3207 4.3325 0.0002462 *** #> Residuals 48 3.5533 0.0740 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 8.286715 Mean: 3.283333output[][-1]#> $var.m #> [1] 0.3948843 #> #> $var.f #> [1] 0.08057407 #> #> $var.A #> [1] 1.579537 #> #> $var.D #> [1] -1.257241 #>carolina2 <- DC$carolina2 # str(carolina2) majes<-subset(carolina2,carolina2[,1]==1) majes<-majes[,c(2,5,4,3,6:8)] output<-carolina(model=2,majes[,c(1:4,6)])#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 1 847836 847836 45.6296 1.097e-09 *** #> set:replication 4 144345 36086 1.9421 0.109652 #> set:male 8 861053 107632 5.7926 5.032e-06 *** #> set:female 8 527023 65878 3.5455 0.001227 ** #> set:male:female 32 807267 25227 1.3577 0.129527 #> Residuals 96 1783762 18581 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 19.08779 Mean: 714.1301output[][-1]#> $var.m #> [1] 2746.815 #> #> $var.f #> [1] 1355.024 #> #> $var.mf #> [1] 2215.415 #> #> $var.Am #> [1] 10987.26 #> #> $var.Af #> [1] 5420.096 #> #> $var.D #> [1] 8861.659 #>carolina3 <- DC$carolina3 # str(carolina3) output<-carolina(model=3,carolina3)#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 3 2.795 0.93167 1.2784 0.300965 #> set:replication 4 3.205 0.80125 1.0995 0.376215 #> set:female 4 1.930 0.48250 0.6621 0.623525 #> set:male 12 20.970 1.74750 2.3979 0.027770 * #> set:female:male 12 27.965 2.33042 3.1978 0.005493 ** #> Residuals 28 20.405 0.72875 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 21.95932 Mean: 3.8875output[][-1]#> $var.mi #> [1] 0.8008333 #> #> $var.m #> [1] 0.2546875 #> #> $var.A #> [1] 1.01875 #> #> $var.D #> [1] 1.601667 #>