Statistic analysis of the Carolina I, II and III genetic designs.

model = 1,2 and 3 is I, II and III see carolina1,2 and 3.

carolina(model, data)

Arguments

model

Constant

data

Data frame

Value

model model analysis (I, II or III) of caroline design

variance additive variance of male, female and male.female interaction.

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979

See also

Examples

library(agricolae) data(DC) carolina1 <- DC$carolina1 # str(carolina1) output<-carolina(model=1,carolina1)
#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 1 0.5339 0.5339 7.2120 0.0099144 ** #> set:replication 2 2.9894 1.4947 20.1914 4.335e-07 *** #> set:male 4 22.1711 5.5428 74.8743 < 2.2e-16 *** #> set:male:female 6 4.8250 0.8042 10.8630 1.311e-07 *** #> set:replication:male:female 10 3.2072 0.3207 4.3325 0.0002462 *** #> Residuals 48 3.5533 0.0740 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 8.286715 Mean: 3.283333
output[][-1]
#> $var.m #> [1] 0.3948843 #> #> $var.f #> [1] 0.08057407 #> #> $var.A #> [1] 1.579537 #> #> $var.D #> [1] -1.257241 #>
carolina2 <- DC$carolina2 # str(carolina2) majes<-subset(carolina2,carolina2[,1]==1) majes<-majes[,c(2,5,4,3,6:8)] output<-carolina(model=2,majes[,c(1:4,6)])
#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 1 847836 847836 45.6296 1.097e-09 *** #> set:replication 4 144345 36086 1.9421 0.109652 #> set:male 8 861053 107632 5.7926 5.032e-06 *** #> set:female 8 527023 65878 3.5455 0.001227 ** #> set:male:female 32 807267 25227 1.3577 0.129527 #> Residuals 96 1783762 18581 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 19.08779 Mean: 714.1301
output[][-1]
#> $var.m #> [1] 2746.815 #> #> $var.f #> [1] 1355.024 #> #> $var.mf #> [1] 2215.415 #> #> $var.Am #> [1] 10987.26 #> #> $var.Af #> [1] 5420.096 #> #> $var.D #> [1] 8861.659 #>
carolina3 <- DC$carolina3 # str(carolina3) output<-carolina(model=3,carolina3)
#> Response(y): yield #> #> Analysis of Variance Table #> #> Response: y #> Df Sum Sq Mean Sq F value Pr(>F) #> set 3 2.795 0.93167 1.2784 0.300965 #> set:replication 4 3.205 0.80125 1.0995 0.376215 #> set:female 4 1.930 0.48250 0.6621 0.623525 #> set:male 12 20.970 1.74750 2.3979 0.027770 * #> set:female:male 12 27.965 2.33042 3.1978 0.005493 ** #> Residuals 28 20.405 0.72875 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> CV: 21.95932 Mean: 3.8875
output[][-1]
#> $var.mi #> [1] 0.8008333 #> #> $var.m #> [1] 0.2546875 #> #> $var.A #> [1] 1.01875 #> #> $var.D #> [1] 1.601667 #>