Kenward and Roger (1997) describbe an improved small sample approximation to the covariance matrix estimate of the fixed parameters in a linear mixed model.

vcovAdj(object, details = 0)

# S3 method for lmerMod
vcovAdj(object, details = 0)

# S3 method for mer
vcovAdj(object, details = 0)

Arguments

object

An lmer model

details

If larger than 0 some timing details are printed.

Value

phiA

the estimated covariance matrix, this has attributed P, a list of matrices used in KR_adjust and the estimated matrix W of the variances of the covariance parameters of the random effetcs

SigmaG

list: Sigma: the covariance matrix of Y; G: the G matrices that sum up to Sigma; n.ggamma: the number (called M in the article) of G matrices)

Note

If $N$ is the number of observations, then the vcovAdj() function involves inversion of an $N x N$ matrix, so the computations can be relatively slow.

References

Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package pbkrtest., Journal of Statistical Software, 58(10), 1-30., http://www.jstatsoft.org/v59/i09/

Kenward, M. G. and Roger, J. H. (1997), Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood, Biometrics 53: 983-997.

See also

getKR, KRmodcomp, lmer, PBmodcomp, vcovAdj

Examples

fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) class(fm1)
#> [1] "lmerMod" #> attr(,"package") #> [1] "lme4"
## Here the adjusted and unadjusted covariance matrices are identical, ## but that is not generally the case: v1 <- vcov(fm1) v2 <- vcovAdj(fm1, details=0) v2 / v1
#> 2 x 2 Matrix of class "dgeMatrix" #> (Intercept) Days #> (Intercept) 1 1 #> Days 1 1
## For comparison, an alternative estimate of the variance-covariance ## matrix is based on parametric bootstrap (and this is easily ## parallelized): if (FALSE) { nsim <- 100 sim <- simulate(fm.ml, nsim) B <- lapply(sim, function(newy) try(fixef(refit(fm.ml, newresp=newy)))) B <- do.call(rbind, B) v3 <- cov.wt(B)$cov v2/v1 v3/v1 }