Individual Regression for each Genotype in Genotypes by Environment Interaction (GEI)
Usage
stab_reg(.data, .y, .rep, .gen, .env)
# Default S3 method
stab_reg(.data, .y, .rep, .gen, .env)
References
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
Author
Muhammad Yaseen (myaseen208@gmail.com)
Kent M. Edkridge (keskridge1@unl.edu)
Examples
data(ge_data)
Yield.StabReg <-
stab_reg(
.data = ge_data
, .y = Yield
, .rep = Rep
, .gen = Gen
, .env = Env
)
Yield.StabReg
#> $StabIndvReg
#> # A tibble: 60 × 9
#> Gen Mean Slope LCI UCI R.Sqr RMSE SSE Delta
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 013BT034 4248. 0.954 0.460 1.45 0.680 324. 942048. 471024.
#> 2 122557 4062. 1.52 1.13 1.90 0.898 253. 574068. 287034.
#> 3 122559 4259. 0.983 0.301 1.67 0.542 447. 1799675. 899838.
#> 4 12B.2511 4414. 1.64 0.994 2.28 0.787 422. 1600984. 800492.
#> 5 12FJ26 4057. 0.703 0.107 1.30 0.442 391. 1372720. 686360.
#> 6 14B.1030 3995. 0.995 0.407 1.58 0.620 385. 1336946. 668473.
#> 7 14C036 3943. 0.615 -0.143 1.37 0.272 497. 2220530. 1110265.
#> 8 14C040 3825. 0.909 0.297 1.52 0.557 401. 1445024. 722512.
#> 9 9496 4072. 1.02 0.513 1.53 0.698 332. 990414. 495207.
#> 10 AUR0809 3792. 1.26 0.732 1.79 0.764 347. 1083957. 541979.
#> # ℹ 50 more rows
#>
#> $MeanSlopePlot
#>