\(\color{green}{\textit{Muhammad Yaseen}}\)
\(\color{green}{\textit{}}\)
\(\color{green}{\text{Population:}}\) Totality, aggregate, whole
\(\color{green}{\text{Sample:}}\) Part or subset of totality
The finite population of \(N\) units is denoted by the index set \(\mathscr{\mathcal{U}}=\left\{ 1,2,\ldots,N\right\}\)
The particular sample of \(n\) units chosen is denoted by \(\mathscr{\mathcal{S}}\)
Each possible sample \(\mathscr{\mathcal{S}}\) from the population has a known probability \(P\mathscr{\left(\mathcal{S}\right)}\) of being chosen and \(\sum P\mathscr{\left(\mathcal{S}\right)}=1\)
Each possible sample has a known probability of being the chosen sample, each unit in the population has a known probability of appearing in our selected sample \(\pi_{i}=P\left(\text{unit }i\text{ in sample}\right)\), \(\pi_{i}\) is the probability that unit \(i\) is included in the sample.
The distribution of different values of the statistic obtained by the process of taking all possible samples from the population
Want to estimate a population quantity, say the population total \(t=\sum_{i=1}^{N}y_{i}\)
One possible estimator for \(t\) is \(\widehat{t}_{\mathcal{S}}=N\overline{y}_{\mathcal{S}}\), where \(\overline{y}_{\mathcal{S}}\) is the average of the \(y_{i}\)s in \(\mathscr{\mathcal{S}}\)
\(\color{green}{\text{Population Total}}\): \[t=\sum_{i=1}^{N}y_{i}\]
\(\color{green}{\text{Population Mean}}\): \[\overline{y}_{\mathcal{U}}=\frac{1}{N}\sum_{i=1}^{N}y_{i}\]
\(\color{green}{n}\): Total Sample Size, from all Strata
\(\color{green}{n_{h}}\): Sample Size taken in Stratum \(h\)
\(\color{green}{N_{h}}\): Number of Population Units in Stratum \(h\)
\(\color{green}{S_{h}^2}\): Population Variance in Stratum \(h\)
\(\color{green}{C_{h}}\): Cost of taking an observation in Stratum \(h\)
\(\color{green}{\text{Proportional Allocation:}}\) \(n_{h}=n\times\frac{N_{h}}{\sum N_{h}}\)
\(\color{green}{n}\): Total Sample Size, from all Strata
\(\color{green}{n_{h}}\): Sample Size taken in Stratum \(h\)
\(\color{green}{N_{h}}\): Number of Population Units in Stratum \(h\)
\(\color{green}{S_{h}^2}\): Population Variance in Stratum \(h\)
\(\color{green}{C_{h}}\): Cost of taking an observation in Stratum \(h\)
\(\color{green}{\text{Neyman Allocation:}}\) \(n_{h}=n\times\frac{N_{h}\sqrt{S_{h}^{2}}}{\sum\left(N_{h}\sqrt{S_{h}^{2}}\right)}\)
\(\color{green}{n}\): Total Sample Size, from all Strata
\(\color{green}{n_{h}}\): Sample Size taken in Stratum \(h\)
\(\color{green}{N_{h}}\): Number of Population Units in Stratum \(h\)
\(\color{green}{S_{h}^2}\): Population Variance in Stratum \(h\)
\(\color{green}{C_{h}}\): Cost of taking an observation in Stratum \(h\)
\(\color{green}{\text{Optimal Allocation:}}\) \(n_{h}=n\times\frac{\frac{N_{h}\sqrt{S_{h}^{2}}}{\sqrt{C_{h}}}}{\sum\left(\frac{N_{h}\sqrt{S_{h}^{2}}}{\sqrt{C_{h}}}\right)}\)
Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|
297897 | 18898.43 | 260706.3 | 335087.8 | 357150824 | 0.0634395 |
Region | Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 350292.01 | 26985.37 | 297186.69 | 403397.33 | 728210378 | 0.0770368 |
NE | 71970.83 | 12360.14 | 47646.95 | 96294.71 | 152772977 | 0.1717381 |
S | 206246.35 | 23065.74 | 160854.60 | 251638.11 | 532028439 | 0.1118359 |
W | 598680.59 | 77636.58 | 445897.25 | 751463.93 | 6027439196 | 0.1296795 |
Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|
916927110 | 58169381 | 802453859 | 1031400361 | 3.383677e+15 | 0.0634395 |
Region | Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 384557574 | 41022160 | 303828848 | 465286299 | 1.682818e+15 | 0.1066736 |
NE | 17722098 | 4490614 | 8884885 | 26559311 | 2.016562e+13 | 0.2533907 |
S | 275091387 | 35287421 | 205648224 | 344534549 | 1.245202e+15 | 0.1282753 |
W | 239556051 | 46090457 | 148853274 | 330258829 | 2.124330e+15 | 0.1923995 |
lt2005 | Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
0 | 0.49 | 0.027465 | 0.4359508 | 0.5440492 | 0.0007543 | 0.0560510 |
1 | 0.51 | 0.027465 | 0.4559508 | 0.5640492 | 0.0007543 | 0.0538529 |
lt2005 | Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
0 | 1508.22 | 84.53722 | 1341.857 | 1674.583 | 7146.542 | 0.0560510 |
1 | 1569.78 | 84.53722 | 1403.417 | 1736.143 | 7146.542 | 0.0538529 |
Region | Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 0.3566667 | 0.0263176 | 0.3048756 | 0.4084578 | 0.0006926 | 0.0737875 |
NE | 0.0800000 | 0.0149051 | 0.0506678 | 0.1093322 | 0.0002222 | 0.1863138 |
S | 0.4333333 | 0.0272252 | 0.3797561 | 0.4869106 | 0.0007412 | 0.0628274 |
W | 0.1300000 | 0.0184768 | 0.0936389 | 0.1663611 | 0.0003414 | 0.1421295 |
Region | Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 1097.82 | 81.00543 | 938.4070 | 1257.2330 | 6561.879 | 0.0737875 |
NE | 246.24 | 45.87792 | 155.9555 | 336.5245 | 2104.784 | 0.1863138 |
S | 1333.80 | 83.79917 | 1168.8891 | 1498.7109 | 7022.301 | 0.0628274 |
W | 400.14 | 56.87169 | 288.2205 | 512.0595 | 3234.389 | 0.1421295 |
Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|
295560.8 | 16379.87 | 263325 | 327796.5 | 268300231 | 0.0554196 |
Region | Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 300504.16 | 16107.59 | 268804.25 | 332204.1 | 259454437 | 0.0536019 |
NE | 97629.81 | 18149.49 | 61911.41 | 133348.2 | 329404127 | 0.1859011 |
S | 211315.04 | 18925.35 | 174069.74 | 248560.3 | 358169038 | 0.0895599 |
W | 662295.51 | 93403.65 | 478476.12 | 846114.9 | 8724242692 | 0.1410302 |
Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|
909736035 | 50417248 | 810514350 | 1008957721 | 2.541899e+15 | 0.0554196 |
Region | Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
NC | 316731380 | 16977399 | 283319676 | 350143084 | 2.882321e+14 | 0.0536019 |
NE | 21478558 | 3992889 | 13620510 | 29336606 | 1.594316e+13 | 0.1859011 |
S | 292037391 | 26154840 | 240564386 | 343510397 | 6.840756e+14 | 0.0895599 |
W | 279488706 | 39416342 | 201916922 | 357060491 | 1.553648e+15 | 0.1410302 |
lt200k | Mean | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
0 | 0.4860852 | 0.0247946 | 0.4372893 | 0.5348812 | 0.0006148 | 0.0510087 |
1 | 0.5139148 | 0.0247946 | 0.4651188 | 0.5627107 | 0.0006148 | 0.0482464 |
lt200k | Total | SE | LCL | UCL | Var | CV |
---|---|---|---|---|---|---|
0 | 1496.17 | 76.31765 | 1345.976 | 1646.364 | 5824.383 | 0.0510087 |
1 | 1581.83 | 76.31765 | 1431.636 | 1732.024 | 5824.383 | 0.0482464 |
Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons.
Ellis , G. F., T. Lumley, T. Żółtak, et al. (2022). srvyr: ‘dplyr’-Like Syntax for Summary Statistics of Survey Data. R Package Version 1.1.1. URL: https://cran.r-project.org/web/packages/srvyr/.
Lohr, S. L. (2022). Sampling: Design and Analysis. CRC Press.
Lu, Y. and S. Lohr (2021). SDAResources: Datasets and Functions for ‘Sampling: Design and Analysis, 3rd Edition’. R Package Version 0.1.1. URL: https://cran.r-project.org/web/packages/SDAResources/.
Lumley, T. (2021). survey: Analysis of Complex Survey Samples. R Package Version 4.1.1. URL: https://cran.r-project.org/web/packages/survey/.
R Core Team (2022). R: A Language & Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-project.org/.
Thompson, S. K. (2012). Sampling. John Wiley & Sons.
Tillé, Y. and A. Matei (2021). sampling: Survey Sampling. R Package Version 2.9. URL: https://cran.r-project.org/web/packages/sampling/.
\(\color{green}{\textit{Muhammad Yaseen, PhD (Statistics, UNL-USA)}}\), https://myaseen208.com