Skip to contents

Exam8.1 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.

References

  1. E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).

See also

Author

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Sami Ullah (samiullahuos@gmail.com)

Examples

library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)

data(DataExam8.1)

# Pg. 141
fm8.4 <-
  aov(
    formula = dbh ~ inoc + Error(repl/inoc) +
                    inoc*country*prov
  , data    = DataExam8.1
     )
#> Warning: Error() model is singular

# Pg. 150
summary(fm8.4)
#> 
#> Error: repl
#>           Df Sum Sq Mean Sq F value Pr(>F)  
#> inoc       1 11.542  11.542   11.46 0.0773 .
#> Residuals  2  2.014   1.007                 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Error: Within
#>               Df Sum Sq Mean Sq F value       Pr(>F)    
#> country       17  54.62   3.213   5.305 0.0000000159 ***
#> prov          41  18.61   0.454   0.749        0.854    
#> inoc:country  17  10.07   0.592   0.978        0.487    
#> inoc:prov     41  21.46   0.523   0.864        0.698    
#> Residuals    116  70.26   0.606                         
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# Pg. 150
model.tables(x = fm8.4, type = "means")
#> Tables of means
#> Grand mean
#>         
#> 3.40411 
#> 
#>  inoc 
#>     7 weeks  1 week
#>       3.625   3.183
#> rep 118.000 118.000
#> 
#>  country 
#>      India Vietnam  Egypt  Kenya   Fiji Thailand Malaysia Philippines Australia
#>      3.575   3.276  2.498  3.491  2.612    3.841    4.031       3.612     2.631
#> rep 24.000  20.000 12.000 32.000 12.000   16.000   36.000      12.000    16.000
#>      PNG Solomon Is. Mauritius Sri Lanka  Guam  China Puerto Rico Vanuatu Benin
#>     3.65       3.699     3.122     3.243 2.342  3.686       3.345   2.762 3.342
#> rep 4.00       8.000     4.000    12.000 4.000 12.000       4.000   4.000 4.000
#> 
#>  prov 
#>         1     2    3    4     5     6     7     8    10    11   12   13    14
#>     2.623 4.013 3.71 3.27 3.404 3.093 3.701 3.541 3.371 3.301 3.18 3.37 3.404
#> rep 4.000 4.000 4.00 4.00 4.000 4.000 4.000 4.000 4.000 4.000 4.00 4.00 4.000
#>        15   16    17    18   19    20    21   22   23    24    25    26   27
#>     3.595 3.43 3.275 3.085 3.66 3.382 3.235 3.46 3.08 3.555 3.918 3.648 3.43
#> rep 4.000 4.00 4.000 4.000 4.00 4.000 4.000 4.00 4.00 4.000 4.000 4.000 4.00
#>        28    29    30    31    32    33    34    35    36    37    38   39   40
#>     2.905 3.708 3.196 3.761 3.416 3.178 2.958 3.636 3.376 3.404 3.252 3.15 3.81
#> rep 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.00 4.00
#>        41    42    45   46    47    48    50    51    52    53    54   55    56
#>     3.195 3.613 3.518 2.76 3.733 3.605 3.404 3.685 3.235 3.755 3.605 2.74 3.662
#> rep 4.000 4.000 4.000 4.00 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.00 4.000
#>        57    58    59    60    61    62    63
#>     3.408 3.404 3.404 3.528 3.178 3.506 3.418
#> rep 4.000 4.000 4.000 4.000 4.000 4.000 4.000
#> 
#>  inoc:country 
#>          country
#> inoc      India  Vietnam Egypt  Kenya  Fiji   Thailand Malaysia Philippines
#>   7 weeks  3.672  3.443   2.747  3.609  2.955  3.611    4.502    3.558     
#>   rep     12.000 10.000   6.000 16.000  6.000  8.000   18.000    6.000     
#>   1 week   3.477  3.110   2.250  3.373  2.268  4.071    3.559    3.665     
#>   rep     12.000 10.000   6.000 16.000  6.000  8.000   18.000    6.000     
#>          country
#> inoc      Australia PNG    Solomon Is. Mauritius Sri Lanka Guam   China 
#>   7 weeks  2.959     3.850  4.200       3.390     3.695     2.245  4.030
#>   rep      8.000     2.000  4.000       2.000     6.000     2.000  6.000
#>   1 week   2.304     3.450  3.197       2.855     2.792     2.440  3.342
#>   rep      8.000     2.000  4.000       2.000     6.000     2.000  6.000
#>          country
#> inoc      Puerto Rico Vanuatu Benin 
#>   7 weeks  3.540       2.720   3.870
#>   rep      2.000       2.000   2.000
#>   1 week   3.150       2.805   2.815
#>   rep      2.000       2.000   2.000
#> 
#>  inoc:prov 
#>          prov
#> inoc      1     2     3     4     5     6     7     8     10    11    12   
#>   7 weeks 2.427 4.682 3.757 3.637 3.625 3.540 4.100 3.774 3.559 3.544 3.135
#>   rep     2.000 2.819 3.344 3.664 2.904 3.183 2.646 3.301 3.308 3.183 3.058
#>   1 week  2.819 3.344 3.664 2.904 3.183 2.646 3.301 3.308 3.183 3.058 3.225
#>   rep     2.427 4.682 3.757 3.637 3.625 3.540 4.100 3.774 3.559 3.544 3.135
#>          prov
#> inoc      13    14    15    16    17    18    19    20    21    22    23   
#>   7 weeks 3.845 3.625 4.104 4.119 3.604 3.114 3.509 3.304 3.591 3.801 3.276
#>   rep     3.225 2.895 3.183 3.085 2.740 2.945 3.055 3.810 3.460 2.880 3.120
#>   1 week  2.895 3.183 3.085 2.740 2.945 3.055 3.810 3.460 2.880 3.120 2.885
#>   rep     3.845 3.625 4.104 4.119 3.604 3.114 3.509 3.304 3.591 3.801 3.276
#>          prov
#> inoc      24    25    26    27    28    29    30    31    32    33    34   
#>   7 weeks 3.021 3.976 4.286 4.186 2.866 3.663 2.988 3.793 4.358 3.343 3.468
#>   rep     2.885 4.090 3.860 3.010 2.675 2.945 3.754 3.404 3.729 2.474 3.014
#>   1 week  4.090 3.860 3.010 2.675 2.945 3.754 3.404 3.729 2.474 3.014 2.449
#>   rep     3.021 3.976 4.286 4.186 2.866 3.663 2.988 3.793 4.358 3.343 3.468
#>          prov
#> inoc      35    36    37    38    39    40    41    42    45    46    47   
#>   7 weeks 3.848 3.688 3.625 3.772 3.132 3.972 3.545 3.705 3.439 2.599 4.119
#>   rep     2.449 3.424 3.064 3.183 2.733 3.168 3.648 2.845 3.520 3.597 2.922
#>   1 week  3.424 3.064 3.183 2.733 3.168 3.648 2.845 3.520 3.597 2.922 3.347
#>   rep     3.848 3.688 3.625 3.772 3.132 3.972 3.545 3.705 3.439 2.599 4.119
#>          prov
#> inoc      48    50    51    52    53    54    55    56    57    58    59   
#>   7 weeks 4.344 3.625 4.137 4.152 4.047 3.167 2.622 3.895 3.478 3.625 3.625
#>   rep     3.347 2.867 3.183 3.233 2.318 3.463 4.043 2.858 3.430 3.339 3.183
#>   1 week  2.867 3.183 3.233 2.318 3.463 4.043 2.858 3.430 3.339 3.183 3.183
#>   rep     4.344 3.625 4.137 4.152 4.047 3.167 2.622 3.895 3.478 3.625 3.625
#>          prov
#> inoc      60    61    62    63   
#>   7 weeks 3.685 3.630 3.560 3.235
#>   rep     3.183 3.371 2.726 3.451
#>   1 week  3.371 2.726 3.451 3.601
#>   rep     3.685 3.630 3.560 3.235

RESFit <-
    data.frame(
      fittedvalue   = fitted.aovlist(fm8.4)
    , residualvalue = proj(fm8.4)$Within[,"Residuals"]
    )

ggplot(
   data    =  RESFit
 , mapping = aes(x = fittedvalue, y = residualvalue)
 ) +
geom_point(size = 2) +
labs(
   x = "Residuals vs Fitted Values"
 , y = ""
 ) +
theme_bw()


# Pg. 153
fm8.6 <-
 aov(
   formula = terms(
                   dbh ~ inoc + repl + col +
                         repl:row + repl:col +
                         prov + inoc:prov
                   , keep.order = TRUE
                   )
 , data   = DataExam8.1
 )
summary(fm8.6)
#>             Df Sum Sq Mean Sq F value        Pr(>F)    
#> inoc         1  11.54  11.542  48.054 0.00000000327 ***
#> repl         2   2.01   1.007   4.193      0.019746 *  
#> col          9  65.24   7.249  30.182       < 2e-16 ***
#> repl:row    20  16.59   0.830   3.454      0.000105 ***
#> repl:col    27  16.41   0.608   2.530      0.001443 ** 
#> prov        58  53.89   0.929   3.869 0.00000026687 ***
#> inoc:prov   58   8.47   0.146   0.608      0.970544    
#> Residuals   60  14.41   0.240                          
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1