Skip to contents

Calculates Divisia monetary aggregates index as given in Barnett, W. A. (1980).

Usage

# Default S3 method
dmai(.data, method = c("Barnett", "Hancock"), logbase = NULL)

Arguments

.data

data.frame

method

Method to calculate Divisia monetary aggregates index, Barnett or Hancock

logbase

base of log to be used in Barnett divisia monetary aggregates index method, default is NULL or 10

Value

Divisia Monetary Aggregates Index

References

Barnett, W. A. (1980). Economic Monetary Aggregates: An Application of Aggregation and Index Number Theory. Journal of Econometrics. 14(1):11-48. (https://www.sciencedirect.com/science/article/pii/0304407680900706)

Author

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Ahmad Nadeem (Ahmed.Nadeem@sbp.org.pk)

Examples


Data <-
  tibble::tibble(
    Date = paste(c("Jun", "Dec"), rep(seq(from = 2000, to = 2017, by = 1), each = 2), sep = "-")
  , x1    = runif(n = 36, min = 162324, max = 2880189)
  , x2    = runif(n = 36, min = 2116,   max =   14542)
  , x3    = runif(n = 36, min = 92989,  max = 3019556)
  , x4    = runif(n = 36, min = 205155, max = 4088784)
  , x5    = runif(n = 36, min = 6082,   max =  186686)
  , x6    = runif(n = 36, min = 11501,  max =   50677)
  , x7    = runif(n = 36, min = 61888,  max =  901419)
  , x8    = runif(n = 36, min = 13394,  max =  347020)
  , x9    = runif(n = 36, min = 25722,  max =  701887)
  , x10   = runif(n = 36, min = 6414,   max =   37859)
  , x11   = runif(n = 36, min = 11688,  max =  113865)
  , x12   = runif(n = 36, min = 2311,   max =   23130)
  , x13   = runif(n = 36, min = 23955,  max =  161318)
  , r1    = runif(n = 36, min = 0.00,   max =  0.00)
  , r2    = runif(n = 36, min = 0.00,   max = 0.00)
  , r3    = runif(n = 36, min = 0.00,   max = 0.00)
  , r4    = runif(n = 36, min = 0.93,   max = 7.43)
  , r5    = runif(n = 36, min = 1.12,   max = 7.00)
  , r6    = runif(n = 36, min = 0.99,   max = 7.93)
  , r7    = runif(n = 36, min = 1.51,   max = 7.42)
  , r8    = runif(n = 36, min = 2.20,   max = 9.15)
  , r9    = runif(n = 36, min = 2.64,   max = 9.37)
  , r10   = runif(n = 36, min = 2.80,   max = 11.34)
  , r11   = runif(n = 36, min = 3.01,   max = 12.41)
  , r12   = runif(n = 36, min = 2.78,   max = 13.68)
  , r13   = runif(n = 36, min = 3.23,   max = 14.96)
  )

Data$Date <- as.Date(paste("01", Data$Date, sep = "-"), format = "%d-%b-%Y")
Data
#> # A tibble: 36 × 27
#>    Date             x1     x2       x3     x4     x5     x6     x7     x8     x9
#>    <date>        <dbl>  <dbl>    <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#>  1 2000-06-01 2121643. 12912. 1184412. 1.18e6 3.26e4 18065. 3.36e5 2.42e4 3.68e5
#>  2 2000-12-01 2542557. 13351. 1075745. 1.04e6 1.79e5 27562. 5.11e5 1.00e5 3.76e5
#>  3 2001-06-01 2230571.  9788.  234200. 2.57e6 1.85e5 19189. 5.87e5 3.06e5 5.03e5
#>  4 2001-12-01 2570691.  3781. 1904380. 1.69e6 9.57e4 21663. 2.05e5 2.96e5 5.88e5
#>  5 2002-06-01 1402978. 11836. 2906729. 3.14e6 1.72e5 49518. 1.54e5 1.90e4 6.69e4
#>  6 2002-12-01  614500.  7449. 2009775. 1.68e6 7.33e4 43298. 1.52e5 7.47e4 2.53e5
#>  7 2003-06-01 1045889. 13638. 1586393. 3.29e6 1.55e5 25118. 1.40e5 5.20e4 5.68e5
#>  8 2003-12-01 1546327. 11724.  532261. 3.72e6 1.07e5 48262. 5.11e5 1.73e5 2.17e5
#>  9 2004-06-01 2140129.  5343. 2640413. 4.03e6 1.50e5 17902. 8.14e5 3.30e5 5.77e5
#> 10 2004-12-01 2852295.  6108. 1598537. 2.49e6 6.97e4 17644. 6.58e5 2.89e5 1.71e5
#> # ℹ 26 more rows
#> # ℹ 17 more variables: x10 <dbl>, x11 <dbl>, x12 <dbl>, x13 <dbl>, r1 <dbl>,
#> #   r2 <dbl>, r3 <dbl>, r4 <dbl>, r5 <dbl>, r6 <dbl>, r7 <dbl>, r8 <dbl>,
#> #   r9 <dbl>, r10 <dbl>, r11 <dbl>, r12 <dbl>, r13 <dbl>

# Divisia monetary aggregates index using Barnett method
DMAIBarnett <- dmai(.data = Data, method = "Barnett", logbase = NULL)
DMAIBarnett
#> # A tibble: 36 × 2
#> # Groups:   Date [36]
#>    Date          DMAI
#>    <date>       <dbl>
#>  1 2000-06-01  NA    
#>  2 2000-12-01   4.21 
#>  3 2001-06-01   1.04 
#>  4 2001-12-01  10.3  
#>  5 2002-06-01  -0.777
#>  6 2002-12-01 -21.0  
#>  7 2003-06-01   9.94 
#>  8 2003-12-01  -1.05 
#>  9 2004-06-01  23.1  
#> 10 2004-12-01  -9.54 
#> # ℹ 26 more rows
DMAIBarnett1 <- dmai(.data = Data, method = "Barnett", logbase = 10)
DMAIBarnett1
#> # A tibble: 36 × 2
#> # Groups:   Date [36]
#>    Date          DMAI
#>    <date>       <dbl>
#>  1 2000-06-01  NA    
#>  2 2000-12-01   4.21 
#>  3 2001-06-01   1.04 
#>  4 2001-12-01  10.3  
#>  5 2002-06-01  -0.777
#>  6 2002-12-01 -21.0  
#>  7 2003-06-01   9.94 
#>  8 2003-12-01  -1.05 
#>  9 2004-06-01  23.1  
#> 10 2004-12-01  -9.54 
#> # ℹ 26 more rows
DMAIBarnett2 <- dmai(.data = Data, method = "Barnett", logbase = 2)
DMAIBarnett2
#> # A tibble: 36 × 2
#> # Groups:   Date [36]
#>    Date         DMAI
#>    <date>      <dbl>
#>  1 2000-06-01  NA   
#>  2 2000-12-01  14.0 
#>  3 2001-06-01   3.45
#>  4 2001-12-01  34.2 
#>  5 2002-06-01  -2.58
#>  6 2002-12-01 -69.7 
#>  7 2003-06-01  33.0 
#>  8 2003-12-01  -3.49
#>  9 2004-06-01  76.8 
#> 10 2004-12-01 -31.7 
#> # ℹ 26 more rows
DMAIBarnett3 <- dmai(.data = Data, method = "Barnett", logbase = exp(1))
DMAIBarnett3
#> # A tibble: 36 × 2
#> # Groups:   Date [36]
#>    Date         DMAI
#>    <date>      <dbl>
#>  1 2000-06-01  NA   
#>  2 2000-12-01   9.69
#>  3 2001-06-01   2.39
#>  4 2001-12-01  23.7 
#>  5 2002-06-01  -1.79
#>  6 2002-12-01 -48.3 
#>  7 2003-06-01  22.9 
#>  8 2003-12-01  -2.42
#>  9 2004-06-01  53.2 
#> 10 2004-12-01 -22.0 
#> # ℹ 26 more rows

# Divisia monetary aggregates index using Hancock method
DMAIHancock <- dmai(.data = Data, method = "Hancock")
DMAIHancock
#> # A tibble: 36 × 2
#> # Groups:   Date [36]
#>    Date        DMAI
#>    <date>     <dbl>
#>  1 2000-06-01  NA  
#>  2 2000-12-01  15.3
#>  3 2001-06-01  29.4
#>  4 2001-12-01 112. 
#>  5 2002-06-01  19.5
#>  6 2002-12-01 -33.8
#>  7 2003-06-01  37.6
#>  8 2003-12-01  16.2
#>  9 2004-06-01 108. 
#> 10 2004-12-01 -13.0
#> # ℹ 26 more rows

library(ggplot2)
ggplot(data = DMAIBarnett, mapping = aes(x = Date, y = DMAI)) +
  geom_point() +
  geom_line() +
  geom_text(aes(label = round(DMAI, 2)), vjust = "inward", hjust = "inward") +
  scale_x_date(
                date_breaks = "6 months"
              , date_labels = "%b-%Y"
              , limits = c(min(DMAIBarnett$Date), max = max(DMAIBarnett$Date))) +
  theme_bw() +
  theme(axis.text.x  = element_text(angle = 90))
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_text()`).


ggplot(data = DMAIHancock, mapping = aes(x = Date, y = DMAI)) +
  geom_point() +
  geom_line() +
  geom_text(aes(label = round(DMAI, 2)), vjust = "inward", hjust = "inward") +
  scale_x_date(
                date_breaks = "6 months"
              , date_labels = "%b-%Y"
              , limits = c(min(DMAIHancock$Date), max = max(DMAIHancock$Date))) +
  theme_bw() +
  theme(axis.text.x  = element_text(angle = 90))
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_text()`).