Genotype by Environment Interaction Variances
ge_var.Rd
Calcuates Genotype by Environment Interaction Variances
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Author
Muhammad Yaseen (myaseen208@gmail.com)
Examples
data(cultivo2008)
ge_var(
.data = cultivo2008
, .y = y
, .gen = entry
, .env = site
)
#> $ge_variances
#> 1 2 3 4 5 6 7
#> [1,] 61425.81 701524.87 661420.550 1850918.66 725412.26 5263567.2 1244198.0
#> [2,] 64514.68 248366.91 218696.080 1049194.99 1722091.23 1069289.1 74165.5
#> [3,] 944401.25 117670.91 1778058.895 179074.17 1137421.28 165525.0 501337.2
#> [4,] 15663.85 391002.87 742941.681 295230.38 65231.42 249181.1 391441.6
#> [5,] 128173.92 213843.57 107972.350 1052812.54 1083430.25 3666313.0 697360.3
#> [6,] 459663.21 53372.64 873376.668 627988.40 747537.01 539994.9 3063675.1
#> [7,] 873304.51 56795.07 836493.317 94146.38 199078.09 2810844.6 4355701.5
#> [8,] 182141.72 23114.52 1362013.461 57083.23 1369697.24 7738687.3 255963.3
#> [9,] 271064.30 140351.01 75466.341 3218781.03 1342887.64 2334583.6 374191.7
#> [10,] 53334.39 346514.32 15388.045 757505.06 684629.96 160089.6 400416.3
#> [11,] 236500.22 462844.01 593810.483 142482.10 3061030.88 2214399.2 662141.9
#> [12,] 276006.19 126531.36 5820.995 521353.42 1092842.11 431362.8 469243.0
#> 8 9 10 11 12 13
#> [1,] 746795.61 37043.278 1056429.038 1415365.78 1703327.28 10.84558
#> [2,] 1380749.18 17858.801 829582.000 151821.24 314424.53 376.71461
#> [3,] 1444812.27 71238.601 566414.701 2972757.88 130084.86 105761.39948
#> [4,] 2872540.77 7060.211 52797.198 1101928.37 478506.53 740.21116
#> [5,] 271757.52 13950.669 4857.893 34282.22 325918.14 111175.54893
#> [6,] 810781.29 21766.791 93337.552 1101928.37 1146197.22 117097.23871
#> [7,] 59847.42 21685.774 2545847.498 543618.00 45262.06 126971.12682
#> [8,] 3941464.33 39334.625 397278.342 14692.38 2158816.40 1906.11152
#> [9,] 4101050.76 116919.554 819705.753 357514.54 579058.20 303.67638
#> [10,] 2364163.17 84551.441 732858.650 19589.84 212163.19 401.28663
#> [11,] 1339841.94 67929.552 613896.345 1782675.24 2098453.37 1182.16876
#> [12,] 1283275.41 102900.788 2234825.852 842363.02 350353.52 124027.22827
#> 14 15 16 17 18 19
#> [1,] 96891.97 24294.89 285428.47 210590.76 667647.37 327725.0
#> [2,] 182937.47 41367.27 660695.77 102846.65 262485.09 2882657.4
#> [3,] 48835.85 22179.56 226417.70 372206.92 638386.33 541013.4
#> [4,] 253721.38 298630.36 355284.61 1209672.48 620524.98 1581815.0
#> [5,] 142790.48 77774.23 2685992.86 764003.67 46182.61 2089373.2
#> [6,] 81741.72 182074.84 2183916.69 78359.35 449161.85 2537752.5
#> [7,] 805351.06 147175.82 2075852.45 533823.08 2127497.99 2452503.1
#> [8,] 32750.21 28526.07 14802.38 93051.73 290643.37 573784.1
#> [9,] 814266.37 105235.11 889781.38 102846.65 135156.55 866108.2
#> [10,] 214114.68 27531.91 252336.86 543618.00 529177.62 1648279.9
#> [11,] 127135.81 249224.08 2295186.36 475053.57 144973.26 146309.0
#> [12,] 55232.83 114841.38 2031787.16 719926.54 708393.20 185754.7
#> 20 21 22 23 24 25
#> [1,] 1650443.832 768901.13 625896.7 6080673.00 548496.26 13497674
#> [2,] 959902.050 1337006.43 1624881.2 482315.95 445653.21 22121958
#> [3,] 896235.078 827670.65 233953.0 536523.43 543598.97 5070735
#> [4,] 1268441.995 607284.97 1152362.4 447392.05 739490.49 3030092
#> [5,] 827670.646 14692.38 256723.5 698453.65 298734.57 8297885
#> [6,] 1954086.318 122436.49 1248515.8 2101038.92 631750.16 14521554
#> [7,] 651362.105 1121518.21 732072.6 744604.36 3677863.31 20156686
#> [8,] 298745.026 2879706.15 749268.7 193667.63 607263.72 14278117
#> [9,] 4897.460 607284.97 1275327.1 1799332.47 58767.46 9340925
#> [10,] 1092133.455 210590.76 4401301.7 11125.74 3035094.26 6382585
#> [11,] 4897.459 857055.40 601661.4 272807.97 1777715.56 2283273
#> [12,] 102846.648 254667.89 407642.8 408840.09 1062711.50 3424458
#>