R/Examp2.6.1.R
Examp2.6.1.Rd
Examp2.6.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.
Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998).Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.
#------------------------------------------------------------- ## Example 2.6.1 p-76 #------------------------------------------------------------- # PROC MIXED DATA=ex125; # CLASS drug dose region; # MODEL pcv=drug dose drug*dose / ddfm=satterth; # RANDOM region drug*region; # CONTRAST 'drug dif' drug -1 1 drug*dose -0.5 -0.5 0.5 0.5; # CONTRAST 'all' drug 1 -1 dose 0 0 drug*dose 0.5 0.5 -0.5 -0.5, # drug 0 0 dose 1 -1 drug*dose 0.5 -0.5 0.5 -0.5, # drug 0 0 dose 0 0 drug*dose 0.5 -0.5 -0.5 0.5; # RUN; library(lmerTest) str(ex125)#> 'data.frame': 24 obs. of 4 variables: #> $ Region: int 1 1 1 1 2 2 2 2 3 3 ... #> $ Drug : Factor w/ 2 levels "BERENIL","samorin": 1 1 2 2 1 1 2 2 1 1 ... #> $ dose : Factor w/ 2 levels "h","l": 1 2 1 2 1 2 1 2 1 2 ... #> $ Pcv : num 22.6 21.8 19.1 16.4 29 28.8 25.3 18.2 24 23.7 ...ex125$Region1 <- factor(ex125$Region) fm2.14 <- lmerTest::lmer( formula = Pcv ~ dose*Drug + (1|Region/Drug) , data = ex125 , REML = TRUE , control = lmerControl() , start = NULL , verbose = 0L # , subset # , weights # , na.action # , offset , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS") , devFunOnly = FALSE # , ... ) summary(fm2.14)#> Linear mixed model fit by REML. t-tests use Satterthwaite's method [ #> lmerModLmerTest] #> Formula: Pcv ~ dose * Drug + (1 | Region/Drug) #> Data: ex125 #> #> REML criterion at convergence: 92.4 #> #> Scaled residuals: #> Min 1Q Median 3Q Max #> -1.71077 -0.51628 0.08414 0.70276 1.16129 #> #> Random effects: #> Groups Name Variance Std.Dev. #> Drug:Region (Intercept) 0.387 0.6221 #> Region (Intercept) 5.151 2.2695 #> Residual 2.096 1.4479 #> Number of obs: 24, groups: Drug:Region, 12; Region, 6 #> #> Fixed effects: #> Estimate Std. Error df t value Pr(>|t|) #> (Intercept) 17.1333 1.1280 8.2080 15.189 2.69e-07 *** #> doseh 4.3500 0.8359 10.0000 5.204 0.000399 *** #> DrugBERENIL 7.1500 0.9098 11.8185 7.859 4.96e-06 *** #> doseh:DrugBERENIL -3.1833 1.1822 10.0000 -2.693 0.022594 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Correlation of Fixed Effects: #> (Intr) doseh DBEREN #> doseh -0.371 #> DrugBERENIL -0.403 0.459 #> ds:DBERENIL 0.262 -0.707 -0.650anova(object = fm2.14, ddf = "Satterthwaite")#> Type III Analysis of Variance Table with Satterthwaite's method #> Sum Sq Mean Sq NumDF DenDF F value Pr(>F) #> dose 45.65 45.65 1 10 21.7755 0.0008856 *** #> Drug 135.39 135.39 1 5 64.5796 0.0004826 *** #> dose:Drug 15.20 15.20 1 10 7.2507 0.0225945 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1library(multcomp) Contrasts3 <- matrix(c( 0, 0, -1, -0.5 ) , ncol = 4 , byrow = TRUE , dimnames = list( c("C1") , rownames(summary(fm2.14)$coef) ) ) Contrasts3#> (Intercept) doseh DrugBERENIL doseh:DrugBERENIL #> C1 0 0 -1 -0.5#> #> Simultaneous Tests for General Linear Hypotheses #> #> Fit: lmerTest::lmer(formula = Pcv ~ dose * Drug + (1 | Region/Drug), #> data = ex125, REML = TRUE, control = lmerControl(), start = NULL, #> verbose = 0L, contrasts = list(dose = "contr.SAS", Drug = "contr.SAS"), #> devFunOnly = FALSE) #> #> Linear Hypotheses: #> Estimate Std. Error z value Pr(>|z|) #> C1 == 0 -5.5583 0.6917 -8.036 8.88e-16 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> (Adjusted p values reported -- single-step method) #>#> Estimate Std. Error df t value lower upper Pr(>|t|) #> C1 -5.558333 0.6916667 5 -8.036144 -7.336319 -3.780348 0.000482595