Examp2.5.3.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

References

  1. Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998).Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.

See also

Examples

#------------------------------------------------------------- ## Example 2.5.3.1 p-70 #------------------------------------------------------------- # PROC GLM DATA=ex125; # CLASS drug dose region; # MODEL pcv=region drug region*drug dose drug*dose; # RANDOM region drug*region; # RUN; # PROC MIXED DATA=ex125; # CLASS drug dose region; # MODEL pcv=drug dose drug*dose / ddfm=satterth; # RANDOM region drug*region; # ESTIMATE 'drug dif' drug -1 1 drug*dose -0.5 -0.5 0.5 0.5; # ESTIMATE 'Samorin mean' INTERCEPT 1 drug 0 1 dose 0.5 0.5 # drug*dose 0 0 0.5 0.5; # ESTIMATE 'Samorin HvsL' dose 1 -1 drug*dose 0 0 1 -1; # ESTIMATE 'Samorin high' INTERCEPT 1 drug 0 1 dose 1 0 # drug*dose 0 0 1 0; # RUN; library(lme4) str(ex125)
#> 'data.frame': 24 obs. of 4 variables: #> $ Region: int 1 1 1 1 2 2 2 2 3 3 ... #> $ Drug : Factor w/ 2 levels "BERENIL","samorin": 1 1 2 2 1 1 2 2 1 1 ... #> $ dose : Factor w/ 2 levels "h","l": 1 2 1 2 1 2 1 2 1 2 ... #> $ Pcv : num 22.6 21.8 19.1 16.4 29 28.8 25.3 18.2 24 23.7 ...
ex125$Region1 <- factor(ex125$Region) fm2.11 <- aov( formula = Pcv ~ Region1 + Drug + Error(Drug:Region1) + dose + dose:Drug , data = ex125 , projections = FALSE , qr = TRUE , contrasts = NULL # , ... )
#> Warning: Error() model is singular
summary(fm2.11)
#> #> Error: Drug:Region1 #> Df Sum Sq Mean Sq F value Pr(>F) #> Region1 5 117.37 23.47 8.178 0.018857 * #> Drug 1 185.37 185.37 64.580 0.000483 *** #> Residuals 5 14.35 2.87 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Error: Within #> Df Sum Sq Mean Sq F value Pr(>F) #> dose 1 45.65 45.65 21.775 0.000886 *** #> Drug:dose 1 15.20 15.20 7.251 0.022594 * #> Residuals 10 20.96 2.10 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
fm2.12 <- lmerTest::lmer( formula = Pcv ~ dose*Drug + (1|Region/Drug) , data = ex125 , REML = TRUE , control = lmerControl() , start = NULL , verbose = 0L # , subset # , weights # , na.action # , offset , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS") , devFunOnly = FALSE # , ... ) summary(fm2.12)
#> Linear mixed model fit by REML. t-tests use Satterthwaite's method [ #> lmerModLmerTest] #> Formula: Pcv ~ dose * Drug + (1 | Region/Drug) #> Data: ex125 #> #> REML criterion at convergence: 92.4 #> #> Scaled residuals: #> Min 1Q Median 3Q Max #> -1.71077 -0.51628 0.08414 0.70276 1.16129 #> #> Random effects: #> Groups Name Variance Std.Dev. #> Drug:Region (Intercept) 0.387 0.6221 #> Region (Intercept) 5.151 2.2695 #> Residual 2.096 1.4479 #> Number of obs: 24, groups: Drug:Region, 12; Region, 6 #> #> Fixed effects: #> Estimate Std. Error df t value Pr(>|t|) #> (Intercept) 17.1333 1.1280 8.2080 15.189 2.69e-07 *** #> doseh 4.3500 0.8359 10.0000 5.204 0.000399 *** #> DrugBERENIL 7.1500 0.9098 11.8185 7.859 4.96e-06 *** #> doseh:DrugBERENIL -3.1833 1.1822 10.0000 -2.693 0.022594 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Correlation of Fixed Effects: #> (Intr) doseh DBEREN #> doseh -0.371 #> DrugBERENIL -0.403 0.459 #> ds:DBERENIL 0.262 -0.707 -0.650
anova(object = fm2.12, ddf = "Satterthwaite")
#> Type III Analysis of Variance Table with Satterthwaite's method #> Sum Sq Mean Sq NumDF DenDF F value Pr(>F) #> dose 45.65 45.65 1 10 21.7755 0.0008856 *** #> Drug 135.39 135.39 1 5 64.5796 0.0004826 *** #> dose:Drug 15.20 15.20 1 10 7.2507 0.0225945 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
library(multcomp)
#> Loading required package: mvtnorm
#> Loading required package: survival
#> Loading required package: TH.data
#> Loading required package: MASS
#> #> Attaching package: ‘TH.data’
#> The following object is masked from ‘package:MASS’: #> #> geyser
Contrasts1 <- matrix(c( 1, 0.5, 0, 0 , 0, 0, -1, -0.5 , 1, 1, 0, 0 , 0, 1, 0, 0 ) , ncol = 4 , byrow = TRUE , dimnames = list( c("C1", "C2", "C3", "C4") , rownames(summary(fm2.12)$coef) ) ) Contrasts1
#> (Intercept) doseh DrugBERENIL doseh:DrugBERENIL #> C1 1 0.5 0 0.0 #> C2 0 0.0 -1 -0.5 #> C3 1 1.0 0 0.0 #> C4 0 1.0 0 0.0
summary(glht(fm2.12, linfct=Contrasts1))
#> #> Simultaneous Tests for General Linear Hypotheses #> #> Fit: lmerTest::lmer(formula = Pcv ~ dose * Drug + (1 | Region/Drug), #> data = ex125, REML = TRUE, control = lmerControl(), start = NULL, #> verbose = 0L, contrasts = list(dose = "contr.SAS", Drug = "contr.SAS"), #> devFunOnly = FALSE) #> #> Linear Hypotheses: #> Estimate Std. Error z value Pr(>|z|) #> C1 == 0 19.3083 1.0477 18.429 < 1e-07 *** #> C2 == 0 -5.5583 0.6917 -8.036 < 1e-07 *** #> C3 == 0 21.4833 1.1280 19.046 < 1e-07 *** #> C4 == 0 4.3500 0.8359 5.204 7.21e-07 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> (Adjusted p values reported -- single-step method) #>