R/Examp2.5.1.1.R
Examp2.5.1.1.Rd
Examp2.5.1.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.
Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998).Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.
#------------------------------------------------------------- ## Example 2.5.1.1 p-67 #------------------------------------------------------------- # PROC MIXED DATA=ex125; # CLASS drug dose region; # MODEL pcv=drug dose drug*dose / solution covb; # RANDOM region drug*region; # RUN; library(lme4) str(ex125)#> 'data.frame': 24 obs. of 4 variables: #> $ Region: int 1 1 1 1 2 2 2 2 3 3 ... #> $ Drug : Factor w/ 2 levels "BERENIL","samorin": 1 1 2 2 1 1 2 2 1 1 ... #> $ dose : Factor w/ 2 levels "h","l": 1 2 1 2 1 2 1 2 1 2 ... #> $ Pcv : num 22.6 21.8 19.1 16.4 29 28.8 25.3 18.2 24 23.7 ...fm2.9 <- lme4::lmer( formula = Pcv ~ dose*Drug + (1|Region/Drug) , data = ex125 , REML = TRUE , control = lmerControl() , start = NULL , verbose = 0L # , subset # , weights # , na.action # , offset , contrasts = list(dose = "contr.SAS", Drug = "contr.SAS") , devFunOnly = FALSE # , ... ) summary(fm2.9)#> Linear mixed model fit by REML ['lmerMod'] #> Formula: Pcv ~ dose * Drug + (1 | Region/Drug) #> Data: ex125 #> #> REML criterion at convergence: 92.4 #> #> Scaled residuals: #> Min 1Q Median 3Q Max #> -1.71077 -0.51628 0.08414 0.70276 1.16129 #> #> Random effects: #> Groups Name Variance Std.Dev. #> Drug:Region (Intercept) 0.387 0.6221 #> Region (Intercept) 5.151 2.2695 #> Residual 2.096 1.4479 #> Number of obs: 24, groups: Drug:Region, 12; Region, 6 #> #> Fixed effects: #> Estimate Std. Error t value #> (Intercept) 17.1333 1.1280 15.189 #> doseh 4.3500 0.8359 5.204 #> DrugBERENIL 7.1500 0.9098 7.859 #> doseh:DrugBERENIL -3.1833 1.1822 -2.693 #> #> Correlation of Fixed Effects: #> (Intr) doseh DBEREN #> doseh -0.371 #> DrugBERENIL -0.403 0.459 #> ds:DBERENIL 0.262 -0.707 -0.650anova(fm2.9)#> Analysis of Variance Table #> Df Sum Sq Mean Sq F value #> dose 1 45.65 45.65 21.7755 #> Drug 1 135.39 135.39 64.5796 #> dose:Drug 1 15.20 15.20 7.2507summary(fm2.9)$vcov#> 4 x 4 Matrix of class "dpoMatrix" #> (Intercept) doseh DrugBERENIL doseh:DrugBERENIL #> (Intercept) 1.2723750 -0.3494028 -0.4139028 0.3494028 #> doseh -0.3494028 0.6988055 0.3494028 -0.6988055 #> DrugBERENIL -0.4139028 0.3494028 0.8278056 -0.6988055 #> doseh:DrugBERENIL 0.3494028 -0.6988055 -0.6988055 1.3976111