R/Examp2.4.3.1.R
Examp2.4.3.1.Rd
Examp2.4.3.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.
Duchateau, L. and Janssen, P. and Rowlands, G. J. (1998).Linear Mixed Models. An Introduction with applications in Veterinary Research. International Livestock Research Institute.
#------------------------------------------------------------- ## Example 2.4.3.1 p-66 #------------------------------------------------------------- # PROC MIXED DATA=ex127; # CLASS sire; # MODEL ww=; # RANDOM sire/solution; # RUN; library(lme4) str(ex127)#> 'data.frame': 43 obs. of 2 variables: #> $ sire: int 1 1 1 2 2 2 2 2 2 2 ... #> $ Ww : num 11.1 10.8 11.3 15.9 13 12.6 14.6 13.6 12.5 15.7 ...fm2.8 <- lme4::lmer( formula = Ww~(1|sire) , data = ex127 , REML = TRUE , control = lmerControl() , start = NULL , verbose = 0L # , subset # , weights # , na.action # , offset , contrasts = NULL , devFunOnly = FALSE # , ... ) summary(fm2.8)#> Linear mixed model fit by REML ['lmerMod'] #> Formula: Ww ~ (1 | sire) #> Data: ex127 #> #> REML criterion at convergence: 188.9 #> #> Scaled residuals: #> Min 1Q Median 3Q Max #> -1.5024 -0.7106 -0.2259 0.8414 1.9459 #> #> Random effects: #> Groups Name Variance Std.Dev. #> sire (Intercept) 3.686 1.920 #> Residual 3.542 1.882 #> Number of obs: 43, groups: sire, 8 #> #> Fixed effects: #> Estimate Std. Error t value #> (Intercept) 13.9686 0.7435 18.79#> (Intercept) #> 13.96863#> $sire #> (Intercept) #> 1 -2.1979037 #> 2 -0.0318874 #> 3 -1.7434719 #> 4 3.1587810 #> 5 0.8691909 #> 6 -0.8627974 #> 7 1.3556762 #> 8 -0.5475878 #>