Skip to contents

Exam5.3 Inference using empirical standard error with different Bias connection

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See also

Author

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

Examples


data(DataSet4.1)
DataSet4.1$trt   <- factor(x = DataSet4.1$trt)
DataSet4.1$block <- factor( x = DataSet4.1$block)

##---REML estimates on page 172
library(lmerTest)
Exam5.3REML <-  lmerTest::lmer(formula = y ~ trt + (1|block), data = DataSet4.1, REML = TRUE)
Exam5.3REML
#> Linear mixed model fit by REML ['lmerModLmerTest']
#> Formula: y ~ trt + (1 | block)
#>    Data: DataSet4.1
#> REML criterion at convergence: 259.2176
#> Random effects:
#>  Groups   Name        Std.Dev.
#>  block    (Intercept) 2.157   
#>  Residual             2.925   
#> Number of obs: 60, groups:  block, 15
#> Fixed Effects:
#> (Intercept)         trt2         trt3         trt4         trt5         trt6  
#>     28.1752      -4.1221      -3.6258      -0.3369      -0.1262       0.9317  
#>        trt7         trt8         trt9        trt10        trt11        trt12  
#>     -0.2854      -0.3592       0.7379      -3.2646       0.8118       2.3530  
#>       trt13        trt14        trt15  
#>     -1.9975      -3.2621       0.4171  
library(parameters)
model_parameters(Exam5.3REML)
#> # Fixed Effects
#> 
#> Parameter   | Coefficient |   SE |         95% CI | t(43) |      p
#> ------------------------------------------------------------------
#> (Intercept) |       28.18 | 1.66 | [24.82, 31.53] | 16.93 | < .001
#> trt [2]     |       -4.12 | 2.22 | [-8.60,  0.36] | -1.86 | 0.070 
#> trt [3]     |       -3.63 | 2.22 | [-8.10,  0.85] | -1.63 | 0.110 
#> trt [4]     |       -0.34 | 2.22 | [-4.82,  4.14] | -0.15 | 0.880 
#> trt [5]     |       -0.13 | 2.22 | [-4.60,  4.35] | -0.06 | 0.955 
#> trt [6]     |        0.93 | 2.27 | [-3.65,  5.51] |  0.41 | 0.684 
#> trt [7]     |       -0.29 | 2.22 | [-4.76,  4.19] | -0.13 | 0.898 
#> trt [8]     |       -0.36 | 2.22 | [-4.84,  4.12] | -0.16 | 0.872 
#> trt [9]     |        0.74 | 2.22 | [-3.74,  5.22] |  0.33 | 0.741 
#> trt [10]    |       -3.26 | 2.22 | [-7.74,  1.21] | -1.47 | 0.149 
#> trt [11]    |        0.81 | 2.27 | [-3.77,  5.39] |  0.36 | 0.723 
#> trt [12]    |        2.35 | 2.22 | [-2.13,  6.83] |  1.06 | 0.295 
#> trt [13]    |       -2.00 | 2.22 | [-6.48,  2.48] | -0.90 | 0.373 
#> trt [14]    |       -3.26 | 2.22 | [-7.74,  1.22] | -1.47 | 0.149 
#> trt [15]    |        0.42 | 2.22 | [-4.06,  4.90] |  0.19 | 0.852 
#> 
#> # Random Effects
#> 
#> Parameter             | Coefficient |   SE |       95% CI
#> ---------------------------------------------------------
#> SD (Intercept: block) |        2.16 | 0.66 | [1.18, 3.93]
#> SD (Residual)         |        2.93 | 0.37 | [2.28, 3.75]
#> 
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
#>   using a Wald t-distribution approximation.
##---Standard Error Type "Model Based" with no Bias Connection
anova(object = Exam5.3REML)
#> Type III Analysis of Variance Table with Satterthwaite's method
#>     Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
#> trt 183.41    13.1    14 36.234  1.5312 0.1491
anova(object = Exam5.3REML, ddf = "Satterthwaite")
#> Type III Analysis of Variance Table with Satterthwaite's method
#>     Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
#> trt 183.41    13.1    14 36.234  1.5312 0.1491


##---Standard Error Type "Model Based" with "Kenward-Roger approximation" Bias Connection
anova(object = Exam5.3REML, ddf = "Kenward-Roger")
#> Type III Analysis of Variance Table with Kenward-Roger's method
#>     Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
#> trt 177.28  12.663    14 35.876  1.4799 0.1689

##---ML estimates on page 172
Exam5.3ML <- lmerTest::lmer(formula = y ~ trt + ( 1|block ), data = DataSet4.1, REML = FALSE)
Exam5.3ML
#> Linear mixed model fit by maximum likelihood  ['lmerModLmerTest']
#> Formula: y ~ trt + (1 | block)
#>    Data: DataSet4.1
#>       AIC       BIC    logLik  deviance  df.resid 
#>  332.8808  368.4846 -149.4404  298.8808        43 
#> Random effects:
#>  Groups   Name        Std.Dev.
#>  block    (Intercept) 2.122   
#>  Residual             2.457   
#> Number of obs: 60, groups:  block, 15
#> Fixed Effects:
#> (Intercept)         trt2         trt3         trt4         trt5         trt6  
#>     28.2268      -4.1617      -3.6804      -0.5774      -0.1739       0.8665  
#>        trt7         trt8         trt9        trt10        trt11        trt12  
#>     -0.3725      -0.3544       0.7644      -3.2707       0.6753       2.2244  
#>       trt13        trt14        trt15  
#>     -1.9513      -3.2356       0.3458  
library(parameters)
model_parameters(Exam5.3ML)
#> # Fixed Effects
#> 
#> Parameter   | Coefficient |   SE |         95% CI | t(43) |      p
#> ------------------------------------------------------------------
#> (Intercept) |       28.23 | 1.44 | [25.33, 31.12] | 19.66 | < .001
#> trt [2]     |       -4.16 | 1.88 | [-7.95, -0.37] | -2.21 | 0.032 
#> trt [3]     |       -3.68 | 1.88 | [-7.47,  0.11] | -1.96 | 0.057 
#> trt [4]     |       -0.58 | 1.88 | [-4.37,  3.21] | -0.31 | 0.760 
#> trt [5]     |       -0.17 | 1.88 | [-3.96,  3.62] | -0.09 | 0.927 
#> trt [6]     |        0.87 | 1.93 | [-3.02,  4.75] |  0.45 | 0.655 
#> trt [7]     |       -0.37 | 1.88 | [-4.16,  3.42] | -0.20 | 0.844 
#> trt [8]     |       -0.35 | 1.88 | [-4.14,  3.44] | -0.19 | 0.851 
#> trt [9]     |        0.76 | 1.88 | [-3.03,  4.55] |  0.41 | 0.686 
#> trt [10]    |       -3.27 | 1.88 | [-7.06,  0.52] | -1.74 | 0.089 
#> trt [11]    |        0.68 | 1.93 | [-3.21,  4.56] |  0.35 | 0.728 
#> trt [12]    |        2.22 | 1.88 | [-1.57,  6.01] |  1.18 | 0.243 
#> trt [13]    |       -1.95 | 1.88 | [-5.74,  1.84] | -1.04 | 0.305 
#> trt [14]    |       -3.24 | 1.88 | [-7.03,  0.55] | -1.72 | 0.092 
#> trt [15]    |        0.35 | 1.88 | [-3.44,  4.14] |  0.18 | 0.855 
#> 
#> # Random Effects
#> 
#> Parameter             | Coefficient |   SE |       95% CI
#> ---------------------------------------------------------
#> SD (Intercept: block) |        2.12 | 0.52 | [1.31, 3.44]
#> SD (Residual)         |        2.46 | 0.26 | [2.00, 3.02]
#> 
#> Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed
#>   using a Wald t-distribution approximation.

##---Standard Error Type "Model Based" with no Bias Connection
anova(object = Exam5.3ML )
#> Type III Analysis of Variance Table with Satterthwaite's method
#>     Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
#> trt 175.26  12.518    14 49.043  2.0736 0.03067 *
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(object = Exam5.3ML, ddf = "Satterthwaite")
#> Type III Analysis of Variance Table with Satterthwaite's method
#>     Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
#> trt 175.26  12.518    14 49.043  2.0736 0.03067 *
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1