Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-60)
Source:R/Exam2.B.7.R
Exam2.B.7.Rd
Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
Author
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
Examples
#-----------------------------------------------------------------------------------
## Classical main effects and Interaction Model
#-----------------------------------------------------------------------------------
data(DataExam2.B.7)
DataExam2.B.7$a <- factor(x = DataExam2.B.7$a)
DataExam2.B.7$b <- factor(x = DataExam2.B.7$b)
Exam2.B.7.lm1 <- lm(formula = y~ a + b + a*b, data = DataExam2.B.7)
#-----------------------------------------------------------------------------------
## One way treatment effects model
#-----------------------------------------------------------------------------------
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.7.lm1)
DesignMatrix2.B.7.2 <- DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("a2","b")]
lmfit2 <- lm.fit(x = DesignMatrix2.B.7.2, y = DataExam2.B.7$y)
Coefficientslmfit2 <- coef( object = lmfit2)
Coefficientslmfit2
#> (Intercept) b2 a2:b2
#> 41.050 -2.800 -6.725
#-----------------------------------------------------------------------------------
## One way treatment effects model without intercept
#-----------------------------------------------------------------------------------
DesignMatrix2.B.7.3 <-
as.matrix(DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("(Intercept)","a2","b")])
lmfit3 <- lm.fit(x = DesignMatrix2.B.7.3, y = DataExam2.B.7$y)
Coefficientslmfit3 <- coef( object = lmfit3)
Coefficientslmfit3
#> b2 a2:b2
#> 38.250 -6.725
#-----------------------------------------------------------------------------------
## Nested Model (both models give the same result)
#-----------------------------------------------------------------------------------
Exam2.B.7.lm4 <- lm(formula = y~ a + a/b, data = DataExam2.B.7)
summary(Exam2.B.7.lm4)
#>
#> Call:
#> lm(formula = y ~ a + a/b, data = DataExam2.B.7)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.325 -1.769 -0.475 2.581 6.775
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 40.975 2.164 18.933 2.64e-10 ***
#> a2 0.150 3.061 0.049 0.96172
#> a1:b2 -2.725 3.061 -0.890 0.39078
#> a2:b2 -9.600 3.061 -3.137 0.00859 **
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 4.328 on 12 degrees of freedom
#> Multiple R-squared: 0.5188, Adjusted R-squared: 0.3985
#> F-statistic: 4.313 on 3 and 12 DF, p-value: 0.02787
#>
Exam2.B.7.lm4 <- lm(formula = y~ a + a*b, data = DataExam2.B.7)
summary(Exam2.B.7.lm4)
#>
#> Call:
#> lm(formula = y ~ a + a * b, data = DataExam2.B.7)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.325 -1.769 -0.475 2.581 6.775
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 40.975 2.164 18.933 2.64e-10 ***
#> a2 0.150 3.061 0.049 0.962
#> b2 -2.725 3.061 -0.890 0.391
#> a2:b2 -6.875 4.328 -1.588 0.138
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 4.328 on 12 degrees of freedom
#> Multiple R-squared: 0.5188, Adjusted R-squared: 0.3985
#> F-statistic: 4.313 on 3 and 12 DF, p-value: 0.02787
#>