Example 2.B.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-58)
Source:R/Exam2.B.6.R
Exam2.B.6.Rd
Exam2.B.6 is related to multi batch regression data assuming different forms of linear models keeping batch effect random.
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
Author
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
Examples
#-----------------------------------------------------------------------------------
## Nested Model with no intercept
#-----------------------------------------------------------------------------------
data(Table1.2)
Table1.2$Batch <- factor(x = Table1.2$Batch)
library(nlme)
Exam2.B.6fm1 <- lme(
fixed = Y ~ X
, data = Table1.2
, random = list(Batch = pdDiag(~1), X = pdDiag(~1))
, method = c("REML", "ML")[1]
)
Exam2.B.6fm1
#> Linear mixed-effects model fit by REML
#> Data: Table1.2
#> Log-restricted-likelihood: -87.76411
#> Fixed: Y ~ X
#> (Intercept) X
#> 96.4894724 0.1241651
#>
#> Random effects:
#> Formula: ~1 | Batch
#> (Intercept)
#> StdDev: 2.511884
#>
#> Formula: ~1 | X %in% Batch
#> (Intercept) Residual
#> StdDev: 2.192282 0.9529553
#>
#> Number of Observations: 36
#> Number of Groups:
#> Batch X %in% Batch
#> 4 36
library(broom.mixed)
tidy(Exam2.B.6fm1)
#> Warning: ran_pars not yet implemented for multiple levels of nesting
#> # A tibble: 2 × 7
#> effect term estimate std.error df statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 fixed (Intercept) 96.5 1.39 31 69.2 1.52e-35
#> 2 fixed X 0.124 0.0263 31 4.72 4.76e- 5