Example 2.B.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-54)
Source:R/Exam2.B.2.R
Exam2.B.2.Rd
Exam2.B.2 is used to visualize the effect of glm model statement with binomial data with logit and probit links.
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
Author
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
Examples
#-----------------------------------------------------------------------------------
## probitit Model discussed in Example 2.B.2 using DataExam2.B.2
## Default link is logit
## using fmaily = binomial gives warning message of no-integer successes
#-----------------------------------------------------------------------------------
data(DataExam2.B.2)
Exam2.B.2glm <- glm(formula = y/n~x, family = quasibinomial(link = "probit"), data = DataExam2.B.2)
summary(Exam2.B.2glm)
#>
#> Call:
#> glm(formula = y/n ~ x, family = quasibinomial(link = "probit"),
#> data = DataExam2.B.2)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.45281 0.18202 -2.488 0.034555 *
#> x 0.25157 0.03928 6.405 0.000125 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> (Dispersion parameter for quasibinomial family taken to be 0.05522989)
#>
#> Null deviance: 3.49679 on 10 degrees of freedom
#> Residual deviance: 0.61969 on 9 degrees of freedom
#> AIC: NA
#>
#> Number of Fisher Scoring iterations: 5
#>
library(parameters)
model_parameters(Exam2.B.2glm)
#> Parameter | Log-Risk | SE | 95% CI | t(9) | p
#> ---------------------------------------------------------------
#> (Intercept) | -0.45 | 0.18 | [-0.81, -0.10] | -2.49 | 0.013
#> x | 0.25 | 0.04 | [ 0.18, 0.33] | 6.40 | < .001
#>
#> Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
#> computed using a Wald t-distribution approximation.